
Managing Dynamics CRM 2013
Applications from Cradle to Grave

A How-to Guide

By: Riaan Van Der Merwe,
General Manager, Dynamics, Neudesic

Table of Contents

Introduction..3

Creating the Right Fit ...3

Solutions Strategy..3

Development Infrastructure...4

Version Control...5

Requirements and Testing Strategy...5

Deployment Strategy..6

Data Strategy..7

Determine Your ALM Approach..7

About the Author..8

3

Introduction
Application Lifecycle Management, or ALM, is one of

those processes with myriad variables that depend

on a number of factors. It is also a process that, when

done well, can streamline the entire lifecycle of your

Microsoft Dynamics CRM application.

ALM is not a one size fits all process though. With

Dynamics CRM 2013 in full effect, it’s important to

extract maximum value from the get-go. We’ve cut

through the clutter to hone in on the most effective

methods for deploying ALM in this environment.

There are a number of choices to be made – not all are

necessary for successful deployment but each should

be evaluated, and then mixed and matched based

on your specific enterprise, situation and goals. This

blended approach to ALM offers flexibility and a custom

fit to your particular needs.

Creating the Right Fit
If you look at the high-traffic sites that are currently

prevalent – Facebook, Google+, LinkedIn, Twitter – they

all build and test continuously, demonstrating quality

and implementing fluid change. These entities are

not stuck with big, single monolithic deployments,

which can actually be more costly. It’s so much harder

to manage significant changes compared to a lot of

little trickle modifications. What’s more beneficial is

constant, continuous integration: you’re always going

to be making mistakes, but you’ll also be testing and

amending.

Environment plays a key role in determining which ALM

methods to deploy for optimum benefit. Your selection

should depend on where you are in your project cycle,

your team and the rigor of your enterprise. Large

enterprises generally take a comprehensive approach

to rigor, deployment and change management which

affects ALM deployment very differently than it would

a small organization. The level of your lifecycle choices

depends primarily on what your company, or the

project, is ready for and what the team can handle

without putting the project at risk.

By weaving together the right approaches, you can

build a strategy that works – both short and long term

– to meet the needs of your enterprise. The following

provides a comprehensive view of the various best

practice approaches in ALM.

Solutions Strategy
In CRM, “solutions” are really packages, code packages

that allow the export and import of application

configurations. They also include code ‘bits’ that have

been deployed into that particular application. Through

combine filing, projects can be moved around for

greater flexibility.

When developing a solution strategy, determine

whether you are going to build a single, monolithic

solution, or different solutions per version or

component. Keep in mind, if you take the monolithic

solution approach and someone makes a change,

everything will be affected. Instead of taking the

easy route, it’s generally better to build one solution

per set of functional requirements. This allows you

to independently make version updates to specific

functionality, and to layer deployments. By building

one solution per component or fix, you can layer

each separately, on top of one another. This practice

meshes well with the tendency for people to work

independently on their particular change. Having a very

specific set of component fixes makes better sense and

offers the best results.

But the ‘single solution’ versus ‘solutions per version or

component’ is not the only consideration in a solution

strategy. You must also determine whether to take

an unmanaged or managed approach. Unmanaged

solutions are applied to the base solution. You can’t

uninstall an unmanaged solution. With a managed

solution, you can install and stack new versions on

top of one another. The unmanaged choice works

well when you’re a small to midsized company – it’s

simple and straightforward – but it doesn’t allow for

much variance. With a managed solution strategy,

greater control over version numbers and processes are

required; this in turn allows you to equip your support

team with the information necessary to know where

you are within the process at the moment you issue a

release. This makes it easier to build a baseline.

It is highly advantageous to use the core components

for unmanaged solutions and then provide to the team

as managed solutions. This offers a layering effect in

which you can remove and augment, making specific

fixes within certain layers. It becomes a ‘cake with

different slices’ – with various components within the

slices. If you have to perform fixes later on, managed

components in that specific slice can be changed,

4

whereas unmanaged solutions leave everything open.

You require much less rigor in your processes, yet

it’s easy for people to change things. If you want to

perform fixes, you’ve always got to do them over the

top.

Using ‘versioning’ in the unmanaged solutions to the

managed environments approach allows for bug fixes

and enables new versions to be distributed readily

to QA and Production. It is important that you never

customize in QA or production. Rather, perform all

changes in development and then deploy the managed

packages to QA and production.

If you ask most CRM developers for their

recommendation, they would tell you to just focus

on the unmanaged approach, steering clear of the

managed method. But the latest fixes in CRM 2013

provide a clearer path to using both a managed and an

unmanaged approach for any deployment environment.

Development Infrastructure
You must also understand how your people are

developing. They may house versions locally. They

may retain versions in the cloud. Members of your

development team may use their own virtual machines

or they may be building on a development machine. We

find most approaches to be driven by the specific client
environments.

It’s now much less about the tools for dev and QA

environments, where people are testing and combining

items for the integration side. Instead, it makes sense

to adopt shared environments, be it virtual machines

somewhere in the cloud or on premise in your

datacenter. We prefer the hybrid approach in which

developers use their own machines and an automated

process to send to a combined store or version.

When they push their build out to automate it, they then

have access to the latest build from everyone else’s

store. As each developer issues a release, it folds back

into the system and, when requested, the team gets the

latest version, which includes everyone else’s builds

as well. This will also automatically build into testing

environments, staging and then production.

Figure 2 shows a full hybrid environment in which the

development servers, and user acceptance test (UAT)

and production servers are in the cloud. The

Figure 1

Figure 2

5

developers can then work on their virtual machines via

source control; the build server at the bottom actually

gets pushed to the bigger development, merging

environments and pushing back to them. This is a

fully built out, full lifecycle environment with testers,

developers, QA, analysts, even solution analysts. In this

case, the solution analysts are experts that go in, test

and then find the end users in the environment.

Version Control
With version control, the goal is to rebuild the whole

development and production environments from source

control. If you can’t accomplish that, your version

control is not really set to the appropriate level. A lot of

people are happy just to be able to verify their source

versions, but if you can’t fully recover from having

to start over again from your version control, you’ve

wasted money. You don’t get any of the real benefits of

having code versions. Without version control, you’re

going to endure a bigger workload and longer process

to get to your final product.

There are a couple of great developer toolkits that come

with the Dynamics CRM 2013 software development

kit that allow you to use Visual Studio and talk directly

to CRM in order to properly configure. The Solution

Package Control consists of a set of customizations and

configurations; it will unpack into folders so that you

can use source control. Changes made to particular

entities are viewed as separate occurrences, providing

greater granularity in your source control. This gives

you the ability to see precisely what’s off or whether

something is broken.

A new tool for 2013 allows you to move configuration

data. If you have certain requests, like “include all cities

or states in this lookup,” the tool will enable you to

move that information along as you deploy code. The

tool unpacks the solution, and then puts it in a folder

structure that you can use with your source control

system.

Requirements and Testing
Strategy
It’s imperative that requirements and design tie back to

testing. A lot of people focus on the source control and

the deployment side of ALM. This is a key strategy in

which you can store your requirements and make sure

that every bit gets tested. Any bugs are fed back into

the system to create a closed loop, ensuring that every

requirement becomes a user story that becomes a task;

it’s essentially a test of the test plan.

A strong requirement, versioning, testing, deployment

and bug control system is essential to the delivery of

a good product. This is really the only way to ensure

quality. Without this quality cycle, you can’t accomplish

the rest successfully.

There’s been a lot of talk around automated testing.

Many will tell you, “it’s the only way to go,” but

95 percent of people who tell you that have never

implemented it. The moment you start implementing,

you discover it’s rather difficult, and sometimes the

things that are very obvious to a human tester cost a lot

of money to automatically code and test. The amount

of time it will take is usually a key price consideration. If

you make a change, you can rerun your whole test set

for a couple of minutes or a couple of hours, and you’re

done. You’ll know all is as it was before.

But there’s always that management decision regarding

where to spend your money and what makes sense in

terms of putting these initial scripts together, especially

if it’s UI-based with CRM. In this case, because the UI

is so flexible, it’s easy to simply drag and drop to make

changes. If that’s done every time, you have to update

your automated testing, which will drive your costs

up significantly. Better to focus on unit testing where

you can run JavaScript on plugins and then automate

integration testing.

This is something you can fully define and mock up,

whereas UI testing is easier done by hand and at a

function level, not to the nth degree. Figure 3 is an

example of a full cycle demonstrating how, if you drill

into it a bit, the requirements become a user story,

which become tasks.

6

This represents a full, end-to-end enterprise system with

governance – the ideal, with all the bells and whistles.

This is at the top end; most people tend to achieve maybe

30 to 40 percent of this. But it’s always nice to see what

a full deployment looks like. It’s a good schema to use at

the starting point and then say, “What’s overkill and what

are we prepared to do in the environment?” You should

really only be doing all of this if you’re a multi-million

dollar company. Otherwise, you won’t have enough

people to complete all sign-off steps.

We use Microsoft’s TFS a great deal; it’s very popular

these days. It allows you to drag current, active tasks

as they run through the different stages. There are

probably four or five good tools in this space. They

generally do the same things, giving you a definable

set of requirements to task against. Users also have the

ability to drag and drop the tasks they’re working on so

stakeholders can see the tasks others are working on.

They can see what the burn down (resource utilization) is,

which tasks are closed, and the capacity others have.

The whole test case aspect of the tools is extremely

useful. You can create test cases and define – step-by-step

– what the task is. So you’ve got a manual tester who can

see which steps are required. They know what they’re

supposed to see, and they can take screenshots as they

run the test and paste it in to uncover what they didn’t

see. Someone can actually come back and view the triage

to gauge if it’s a bug and put it back into the task list to fix.

Deployment Strategy
A deployment strategy can encompass test

environments for functionality or UAT for performance.

Each has its place but UAT is more akin to your

production environment. You can actually test that

space – stress testing and performance testing.

‘Mock’ is a functionality that is fairly self descriptive.

If you’re writing a certain function of a particular

component, you can actually mock losses around it. You

can then look at the result and put in what are called

asserts to make sure you get the proper reaction. This

method is used in conjunction with unit tests.

It takes a bit more work to write the full mock of what

your integration is going to look like, but if you write

the mock strictly to the specifications of your interface,

you can do a lot of pretesting before real integration.

I recommend mocking because it decouples the

timelines a bit; otherwise you’ve got a case of the

chicken and the egg. Both sides are writing interfaces to

a central point. One side has to wait for the other side

to start testing. It’s better to have a mock in the middle.

You can test against it until you’re ready to perform the

integration.

Figure 3

7

Governance plays a key role in your deployment

strategy. It ensures that all external and internal parties

have a clear picture of deployment and how it affects

stakeholders outside the project.

There are a couple of excellent tools that can greatly

benefit your deployment strategy. ALM Tool Build

Manager in Visual Studio Online enables more

sophisticated development and testing. The xRM CI

Framework is a set of tools that allows you to quickly

and easily implement Continuous Integration for

your Dynamics CRM solutions. The Adxstudio ALM

Toolkit is a suite of tools that helps automate change

management for Microsoft Dynamics CRM projects

using a source control system such as Microsoft Team

Foundation Server.

Data Strategy
When determining your data strategy, you can use

configuration data, test data or data obfuscation.

Configuration data is key to automation, as well in

ensuring systems are configured properly. There are

times when you want to recreate a new test for an

issue that you really can only conduct with data that’s

representative of live data rather than created test data.

There are some tools that are good at obfuscation –

they obscure your production data by changing names,

phone numbers, addresses, any recognizable data that

shouldn’t be readily revealed.

Existing tools are great and you can write your own as

well. If you take snapshots in your testing, you’ve got to

place the right security around this data. Even in a test

environment, production data must be secured.

Determine Your ALM Approach
There is no one, right way to tackle ALM. Instead there

are a variety of methods that should be evaluated,

selected and blended for your unique scenario. You

should pick and choose what makes sense for your

organization to come up with the best approach.

Bottom line, your requirements should drive your

ALM process. Throughout it, you’ll want to measure

how closely you met your set objectives and how

many issues have arisen. It’s all about tracking. Have

best practices in place as each project starts. You can

certainly build on it later, and a lot of people do. But it’s

going to be twice as hard to build it later than it was

to start from the beginning. What would have taken

one day becomes a week when you’re already halfway

through.

Focus on testing and testability. And note that some

things are worth automating. If your environment

allows it, build continuously and test constantly. This

will empower you to push applications to market

quicker. Why wait for a massive release cycle if you can

keep on pushing and making your customer’s happy.

Know that you don’t have to do everything from

scratch. There are great tools available to create a

simpler route. Don’t over-complicate the process.

Do what works continuously and learn using your

knowledge and history to make it better, not more

complex.

Contrary to public opinion, ALM processes can be fully

implemented in a Dynamics CRM environment. Sure,

there are a lot of people who say, “Oh, it’s too hard,”

but it’s actually pretty easy. Just follow the example of

what other people have done to get it done. The end

result will be better quality applications.

Riaan van der Merwe is a general manager for Dynamics at Neudesic, a Microsoft National Systems Integrator and

Gold Certified Partner, dedicated to the Dynamics CRM platform. Van Der Merwe brings 25+ years of experience

in architecture strategy and application development management. Prior to Neudesic, he was a global architect

and development manager at Jones Lang LaSalle, where he led the strategy and deployment of the firm’s intranet,

internet, extranet and application deployment frameworks, as well as the firm’s CRM and SharePoint strategies,

Before Jones Lang LaSalle, he consulted financial services and real estate companies.

About the Author

