Neuron 3.1 (3.1.0.170)

Neuron ESB 3.1 Release Themes

The Neuron ESB 3.1 release contains a number of enhancements and features that continue to make it
the easiest, most cost effective and intuitive Application and Service Integration platform to use for the
Microsoft .NET environment.

There are significant UX improvements as well as new performance, connectivity and scalability options,
the predominate focus of this release is developer productivity.

Developer Productivity

Performance

Scalability

Connectivity

Neuron ESB 3.1 provides significant UX, debugging tools and features that make building, testing,
debugging and managing complex business processes far easier than in previous versions. More details
of these features are included below but here are some highlights:

* Step by step debugging of Business Processes

¢ Support for Categories, Folders and Filters

* Design time support for all Business Process Steps

* Set Breakpoints, F5/F11 support and Disable Process Steps
* Tabbed view for multiple Processes

* Tabbed view for multiple Code Step Editors

* Llanguage support for VB.NET, JavaScript and full C# classes

Neuron ESB 3.1 also provides new connectivity options with Salesforce.com and Microsoft Dynamics
CRM 2013 adapters that support full metadata harvesting and sample message generation.

In addition, Neuron ESB has extended support for RabbitMQ. By supporting full clustered/mirrored
environments with zero message loss and interruption of the Neuron ESB messaging pub/sub system.

Many more feature enhancements and additions have been detailed below:

User Experience

There was significant work done in the Neuron ESB 3.1 release to support users running the desktop
display mode at 125%. Previously, Neuron ESB only supported 100% display mode. This would cause
many of the Ul elements, text and dialogs within the Neuron ESB Explorer to appear either somewhat
distorted and, in some cases, nonfunctional. Below are some before and after images:

% Open Neuron Configuration x| & Open Neuron Configuration

neurongREess neuron&ese
Neuron ESB, Enterprise Edition, Version 3.0.3.327. Copyright (C) 2006-2012 Neudesic LLC Neuron ESB, Enterprise Edition, Version 3.1.0.168. Copyright (C) 2006-2012 Neudesic LLC
[Work Modes [~ Connect Options [~ Work Modes [~ Connect Options

Online Server Name: [localhost Online Server Name: [localhost

Connect to Neuron ESB Service DERSYBert B 51001 ﬁ et i Discovery Port: [51001
Dynamic Updating e = BEE Instance: -

offiine offline
“= | open Security (Optional) ~ | oven Security (Optional)
2. | Open Neuron Configuration .| | Open Neuron Configuration
Deply Manaly e = | peploy Hanualy — 0
Create - Create) —
: Create Neuron Configuration Password: } Create Neuron Configuration Cerah
Deploy Manualy Deploy Manually
Domain: Domain:

Cancel Cancel

& ™\ 4 N
Scatter Gather Scatter Gather
C# G
Get List Get List of
= | Services
Broadcast and Aggregate Broadcast and Aggregate
'
Ll Code Split
nlit
Steps Steps
& &
Requires Requires
Trancfar | Transform?
Yes No es No
Uyr\aﬁc Dynar#ic
Trancfnr | Transform
= oy
Call
o Call Service
Sarvira \
Join Join

x x

(9 Add Topic 3§ Conditions ‘ (9 Add Topic 54 Conditions
I 5 . B} Manage Subscriptions for ContosoQuoteServicePublisher
] Manage Subscriptions for ContosoQuoteServicePublisher

Finance Purchases

ics to add to Subscriptions:

Current SubscripFinance.Purchases mii e Subscriptions:
| i | Topic | Topic | Permissions

=] 5] i D R) Finance.Purchases
r§ d - L mme D Fnance.Vendors (& Finance.vendors.”.Quo... Send =l
¥ Finance.Vendors >> & Finance.Vendors.*.QuoteService Send @ Finance.vendors.NewMart
9 Finance.Vendors.NewMart @ Finance.Vendors.NewMart.QuoteService
@ Finance.Vendors.NewMart.QuoteService _I« ';’ FwnancE-Ven:mO::Mm
 Finance.Vendors.oldy " © Finance.Vendors.OldMart.QuoteService
Custom Topics X Custom IO x|
9 Finance.Vendors.Oldh
Enter a custom topic. Wildcards ("*") may bg| Enter a custom topic. Widcards (=) may be used:
=] » I I |
o
[agd | cose | [2
T

Select a Condition(s):

Create a Condition(s):

M@— - l |
_Concel | e if==1)

Almost every feature of Neuron ESB 3.1 has a significant UX enhancement, or was influenced by UX. This
section is intended to highlight more of the general UX work delivered with Neuron ESB 3.1. It does not
in any way express the full extent of that work. More examples of the UX work can be found in many, if
not all of the sections of this document.

Environmental Variables

Neuron ESB has always shipped with the ability to]
use Environmental Variables for configuration of any FeR e o T e
adapter or service endpoint, database connection bt L e pinthe fornat
. . . . Metadata HTTP URL [%f {$LoanManagement}
string or process step. By using the bindings EnableClentetadatat it [{4 3 st
. . . : | Metadata HTTPS URL j‘ {$SmtpAlertFromAddress}
expression dialog box, users can bind environmental HTTP Connecon Lk (T, (dsminAletserve)
Windows Domain [%F {$SmtpAlertToAddress}
variables directly to the properties exposed by those S oo & (SdeatDBComecSting)
oge Service Identity
entities. Many developers access the values of e CredertilType
Client Certificate
environmental variables directly in code steps within | server Confcte
processes. However, in previous versions of Neuron o e tatocatin

users were required to manually type in the names

[o |

Z

of those variables with the proper formatting.

In Neuron ESB 3.1, intellisense has been added to the dialog. By pressing ctrl+space, a drop down list of
all available environmental variables (filtered by the category filter) will be displayed for selection.

Security Configuration

One of the most obvious changes previous users of Neuron ESB will find is that Neuron ESB Parties (i.e.
Publishers and Subscribers) are locked down by default. When Publishers or Subscribers are created in
Neuron ESB 3.1, the Microsoft Windows accounts that can host and use them are restricted to those
accounts that are members of the local (“BUILTIN”) Administrators and Users group that exists on the
Neuron ESB server. If hosting the Neuron ESB Client APl on remote machines, the user account hosting
the API must either be a member of those groups on the Neuron ESB server, or the user account must
be added to the Party’s security membership through the Security Tab of either the Publisher or

Subscriber role within the Neuron ESB Explorer. Security can also be removed entirely, the default
behavior in previous versions of Neuron ESB.

¢ Neuron ESB Explorer ;IQ,EI
Fle View Tools Help

& | @~ | ® Running ~ | Configure Server | Category Filter -

You are working offine. Q: \WebCast\Solutions\DemoSolution

Messaging % Publishers

B ® Tasks .
Look For: Find
A GetStarted
= » Publishand Subscribe ||| JNew [l Copy €3 Delete |[2)Hide Detail
9 Topics [| [patva | cateqory | zone | Roles Description H
& pubishers » @ AccountPublisher Collectionlntegration Enterprise Publisher
& subscribers » @ AccountPublisher2 General Enterprise Publisher <
P c =
onditions
Apply Cancel | /> EditProcesses ([Edit Subscriptions 8 Add Account 8% Remove Account Viewing Party HomePub | [0
General Security Processes | Dependendies |
= Account Ty Account Name
‘ Messaging Security and Logging ype
w 5 Group BUILTIN\Administrators
g E— Authentication: None (¢ Windows Integrated Growp BULLTIN\Jsers
Allow Multiple Instances: [V
@d Comecions Log Session Activity: ~
@ Security Unique WMI Counter: v
" processes
=, —
12 of 25 selected.
eAchvlw Al # A B CDE F G H I J K L MNGOTPRG QRS T UV WX Y Z

In addition to locking down Publishers and Subscribers, most of the Security section within the Neuron
ESB Explorer has been refactored to simplify the user experience related to creating and managing the
accounts and certificates that can be used to configure endpoints and other elements with Neuron ESB.

x| In previous versions of Neuron ESB, users were required
st s e e to manually type in search criteria for certificates that
e enone existed in a specific store, a troublesome and error prone
Pl o e s s econ process. This was required when creating certificate type
: e S S R — of Credential in the Security store as well as when a
et — certificate would be required for service or client
e 3 connector endpoint. In some cases, the Neuron ESB
s = | Security Credential store was essentially disconnected
[s et cntaon sty from the Service Endpoints for Issuer Credentials,
R Elinorecbetustionr requiring duplicate information to be entered in many
2 Eorenin 14 yeors et sgnedy - | different places.
Lo | e= | | |nNeuron ESB 3.1, all certificate selections within

Neuron ESB have been linked back into the Neuron ESB
Security store located in the Security->Authentication->Credential section of the Neuron ESB Explorer.
Additionally, all certificate selection is controlled through a new UX experience, eliminating the need for
users to manually search for and type in search criteria.

In previous versions of Neuron ESB, when user credentials were required for service connector
endpoints, users would have to manually enter in account information within the Service Connector tab
of the endpoint, rather than use the user credential created and stored in the Security->Authentication-
>Credential section of the Neuron ESB Explorer. This happened in other areas as well.

In Neuron ESB 3.1 we’ve standardized on the Active Directory selector dialog to allow users to select
Windows accounts when creating Windows Account type credentials in the security store. When used,
Neuron ESB will also resolve and store the associated SID of the account. All account selections within
Neuron ESB have been linked back into the Neuron ESB Security store.

One last area where Neuron ESB 3.1 normalizes the security experience is during the creation of Access
Control Lists. In previous versions of Neuron ESB the credentials that comprised this list were entirely
disconnected from the Security store. Meaning, when a list was created, users were not prompted to
select an existing Credential from the Security store. Instead they were forced to create entirely new
ones, with a different UX experience, that were often duplicates of what already existing in the
Credential store. In Neuron ESB 3.1 we’ve unified the experience so that Access Control Lists are now
comprised of a selection of Credentials that already exist in the Security Store:

=lojx|

Fie Vew Toos Hep

I | B~ | @ Ruming - | Configure Server | Category Fiter -

You are working offiine. Q:\WebCast\Solutions\DemoSolution

% Access Control Lists

tookFor: [Find

[INew [*})Copy E3Delete | (2]Hide Detail

&) Access ControlLists [| catecory | Tvoe | esariotion a

Name
- » 2 < Gener: u

 Roles el =

Viewing ACL AccessControlListCert

= | s |

(9 Messaging
Name: [AccessContoistcert Type: [certificate =

g Repository Desaription: =] Credentis: Credential Name [Type |
[ssiclientConnectorCredential Certificate
i@ Comectens

[/. Category: [oenera

3 ;3" Processes
W oo
30f 3 selected.

SAmww W # A B C D E F G H I J KL MNGOPI QRS ST UV WXJY 2

L 1«

Modified .;

Consistent Entity Management
Neuron ESB 3.1 delivers a new consistent Entity Management experience throughout the Neuron ESB

Explorer. Regardless of the entities, such as Topics, Publishers/Subscribers, WSDL, XML, Databases, etc.,
users should find a consistent interface that varies little from one entity to another.

For example:

* Text boxes representing entity names as well as other properties have been extended to
support long entity names.

* Dropdown controls that display category, entity or other information have been modified to
automatically widen to support the longest entry in the list.

* Descriptions have been modified to support multiple lines and scroll bars.

* Some entity interfaces (such as Service Endpoints) have been reorganized to make data entry
and the selection of options more intuitive.

* In many entity interfaces, user selection is enabled/disabled based on context and user entry to
reduce opportunities of configuration errors.

MSMQ Management

Neuron ESB 3.1 provides users a way to manage, view and edit pending messages awaiting delivery
when using MSMQ based topics. Although this capability exists in Neuron ESB 3.0 r, the user experience
was overwhelming in that it provided unnecessary information to the general user.

In Neuron ESB 3.1, we simplified the experience by making queue paths an optional visible feature and
eliminating the display of non-active infrastructure queues. For example, the following 2 images
demonstrate the Neuron ESB 3.0 interface on the left, while the new Neuron ESB 3.1 interface is on the
right. In Neuron ESB 3.1, there’s a new context menu to optionally display the underlying queue path.

= [BOes s [reve Quses | §vessage Count @ e Quses g et Srets
)

Client Meta data Configuration

The dialog that allowed users to associate WSDL (metadata) with Neuron ESB hosted services has been
redesigned to make it more intuitive and easier to use. When a service endpoint (specifically a client
connector) is hosted using either http or http (non REST), WSDL can be configured for the endpoint by
clicking on the Metadata button located on the Client Connector tab. This is only enabled if the URL
prefix is either http or https.

¢ Configure Client Connector Metadata Lj

" Do not expose metadata for the dient connector.
" Access metadata at external location.

External metadata location: I
% Host a static metadata document.
WSDL Document: I EI

Relative WSDL Path (Optional): ll

V' Replace service port URLs with the Client Connector URL

I Use HTTPS for the Client Connector URL
Save Cancel

Endpoint Health

Previously, Client and Service connectors which were not configured would be displayed in

Neuron ESB Explorer’s Endpoint Health. In Neuron ESB 3.1 only configured Client and Service connectors
are listed.

Neuron Auditing/Reporting/Viewing Messages

New Submission Count Property

This has been added to both Message History and Failed Message reports. If a message is resubmitted
using the message viewer, its Submission Count Property will automatically be incremented on the
message that is resubmitted. Once the message is audited again, the Submission Count property can be
viewed within the Neuron Properties tab of the Message Viewer, highlighted in yellow.

x
[®) Republish |
Message sy [NEWONHOpE S | cutom eropertes |
> Irvine.HR - 784457¢6-95dd-41e0-a25.. Property Value =
Part 1
Parts 1
Priority 0
Relates To
Reply To
Reply-to Id 53a7736¢-fa 1c-4c08-ae 4b-7d58e3ch0 10e
Reply-to Party Id IrvinePub
Reply-to Session Id 24e5dc48-3e73-462a-0566-36066 4433260
RequestHeadersToPreserve
Routing Slip
Schema http://tempuri.org/TestMessage
Semantic Multicast
Sequence 0
Session Id fcf0 1ed-00bf-4679-99ed-9455165ce244
SID 5-1-5-21-436374069-484763869-1708537768-1364
Source Id IrvinePub
ission Count 1
To
Topic Irvine.HR
Transactionld 2ee6fle-119e-4a81-9787-fa327besbeab
Uncompressed Size 3
Username CORP\marty.wasznicky =
o |

Users can use the filter feature of both the Failed Message and Message History reports to query for any
messages that have been resubmitted more than once:

x|
[rexbrsancomt][> =P =
| 5| gl =
| = = =
| gl = =
| = = =
| 5| = =
| = g =
| = = =
| gl = =
| = =

I I

Message Viewer navigation

Message Viewer navigation within the Message History and Failed Message reports has been added.
Now, when viewing a message using the Message Viewer, users can click on message records in the
underlying report and that record will be displayed in the Message Viewer. There is no longer a need to
close and reopen the Message Viewer to view a different record.

Extending Neuron ESB Test Client
The Neuron ESB Test Client has been enhanced to show all Neuron ESB Header, Custom Properties and
HTTP Header properties in the Message History window:

¥ Neuron Test Client - IrvineSub (54300) ' =lolx|
File Message Tools Help
'Connectl Send | Receive Message History IDebugl Errors]
Number of messages to store in memory |10
History Message Header View Custom Properties
Action | Message Id Property | Value -~
Receive 74a6f3b2-dsff-4e2f-b34 sername
Send a68c38a1-8c90-4770-82 Custom Properties
MessageProperty.WebBodyFormatMessageProperty Raw
MessageProperty_HttpRequest.Connection Keep-Alive
MessageProperty_HttpRequest.Host localhost: 9898
MessageProperty_HttpRequest.QueryString
MessageProperty_HttpRequest.Method GET
MessageProperty_HttpRequest.SuppressEntityBody False
MessageHeader.To http:/flocalhost:9898/a
MessageHeader.LocalPath
neuron.ProcessName AuditProcess
HTTP Header
Headers Connection=Keep-Alive
Method GET
Query
StatusCode
StatusDescription
SuppressEntityBody
SuppressPreamble
=
| | 3|
M Body
=
v
<« | I3 [K »
Clear I Clear Al I
Sent: 1 - 1.00/sec Recv: 1 - 1.00/sec

We have updated the viewing binary messages within the Message Viewer, the hex editor would not
resize correctly if the Message Viewer dialog was resized. This has been corrected.

In previous versions of Neuron ESB, if the solution’s bootstrap address had been changed to anything

other than 5000, republishing messages from either the Message History or Failed Message reports
would fail.

Developer Productivity and Business Processes
Neuron ESB has always provided a way for developers to test the Business Processes that are created
within the Neuron ESB Explorer’s Process Designer. Testing entailed submitting a message using the

“Edit Test Message” dialog and watching, as each Process Step in the Business Process executed. Users
would see a green marker move through the Business Process, highlighting each Process Step as it was
executed. However, the testing process lacked true debugging support. For example, there was no way
to stop at a specific point in the Business Process and actually inspect the state and context of the
Process and/or a specific Process Step. There was no way to debug custom code written within a C#
Code Process Step. This required developers to insert custom trace and logging statements prior to
testing. There was also no ability to disable branches or Process Steps within a Process. If extra Process
Steps were included during testing, these would have to be removed from the Process before
deployment.

Neuron ESB 3.1 introduces true Business Process debugging support at design time so that developers
can quickly test, diagnose and fix the Business Processes AS they are developing them. The Business
Process debugging experience within Neuron ESB 3.1 is synonymous to the experience provided by
Microsoft Visual Studio for debugging .NET applications. For example, developers can set Breakpoints,
disable Process Steps, use F5/F10/F11 keys, view exceptions and view the context of the Process and
Process Steps.

Breakpoints

Setting Breakpoints is easy, intuitive and can be set on both on Process Steps as well

EmitEnvVars

as within any code editor belonging to a C#, C# Class and VB.NET Process Step.
Within a Business Process, Breakpoints can be set on any Process Step and selecting
“Add BreakPoint” from the context menu. Once a breakpoint is added, the Process

Remove

Step will change to a reddish brown color. To retain all Breakpoints

EmitEnvVars
=) Copy
=

Cut

between opening and closing of the Business Process, the Process must

s be saved.

Within a VB.NET, C# or C# Class Code Editor, setting Breakpoints is as e

easy as clicking to the left of the line of code that the debugger should

stop on. A red dot will be displayed to the left of the line of code
(Breakpoint Indicator Margin) and the line of code will be highlighted in red. o

Once a Breakpoint is set and the debugging process has started (by selecting the new

“Start/Resume Debugging” toolbar button), the green marker will move to the first Process

Step that has a Breakpoint. Once the green marker moves to a Code Process Step (whether —
or not it has a Process Step level Breakpoint set on it) that has Breakpoints set within its Code Editor, the
debugger will automatically open the Code Editor and stop on the line of code that has the Breakpoint.
The line stopped on will be highlighted in yellow and the debug toolbar of the Code Editor will appear.

ColdWaterVETO X | EmitEnwVars X | UnZip Files X | Order Process X ' EmitEnvVars - C# Class X - X
File Edit View

OlbOD|dal= 2 EEFEX

5 Gusing System;
6 |using System.Ling;

7 | using Neuron.ServiceModel;
& | using Neuron.Pipelines;

9 | using Neuron.Esb;

1 Gnamespace myNamespace

public class MyClass : Neuron.Pipelines.PipelineStep<Neuron.Esb.ESBHessage>

protected override void PipelineC LEsb. ge> context
1
1 // TODO: implement custom pipeline step here.
[] 19 PrintThis(context);|
2 ¥
private void PrintThis(PipelineC LEsb. ge> context)

2 string value = string.Empty;
® [string valueName = string.Empty3 =

foreach (var s in context.EnvironmentVariables)

context.Instance.TraceInformation(string.Format("key={0}, value={1}", s.
_'l_I

nl6 Col10 Ch4

[
[TE————

L |

Line | Column | Description

ColdWaterVETO X | Emitenwars X | UnZip Fles X | Order Process X | Emiténviars - C# Class X | Emitenwars - C=_ X | ReadOnly:EmitEnvVars - 59d7a326 X -

e Bl

de vold Onexeciiop bebuggngFomtext<Neuron-Esb_ESBiiessage> context) |

From there, F5 (continue), F10 (step over) or F11 (step
into) keys can be used to walk through each line of
code in the editor. The debugger can also be stopped
by clicking the “Stop Debugging” toolbar button (F1
key). Once on the last line and F5 (or the continue

toolbar button is pressed) the debugger will move to the next Process Step that has a Breakpoint set on

it.

If an unhandled exception occurs, the line will immediately be highlighted in orange. By moving the

mouse cursor over the Breakpoint Indicator Margin to the left of the line of code, a tooltip will appear

with the error message. If an unhandled exception occurs on a Process Step, the debugger will stop on

that Step and highlight it in red. The exception information can be viewed in the Trace Window.

New Process 5 X EmitEnvars X ' ReadO Vars - b X
File Edit View
ClbDdal= 2 BEIFF oL

void OnExecute(PipelineContext<Neuron.Esb.ESBMessage> context)
{
< 10

The given key was not present in the dictionary.

T

—

context.Data.FromString(context.EnvironmentVariables[valueName]);

EmitEnvVars

i

| Trace

(1)
— — —
» @
Ln 12 Col1 Ch1

To remove all Breakpoints in a Code Step, there’s a red “X” icon on the toolbar. It clears all Breakpoints.

The Process Designer has a similar toolbar button that does the same, but for Process Steps.

L 1S

‘PZoom - @Import @Export @Print ESave D Copy

Clear all breakpoints

Disabling Process Steps

= ‘

EmitEnvVars

Remove

Copy
cut

Disable

Add BreakPoint

EmitEnvVars

o

Quick Watch Window
Neuron ESB 3.1 introduces support for a Quick Watch window that provides the ability for developers to

Disabling Process Steps has been enabled for both design time and
runtime environments. If a user disables a Process Step, that Process
Step will be stepped over and not executed, either when testing in the
Process Designer or at runtime.

Within a Business Process, disabling a Process Step is as easy as selecting
“Disable” from the context menu. Once a Process Step is disabled, the
Process Step will change to a dark grew color. To retain the disabled
condition at runtime, the Business Process must be saved.

view local variable information (much like Microsoft Visual Studio Auto window). If a Breakpoint is hit

during the debugging process, the state of the ESB Message can be evaluated in the Quick Watch.

The state of custom variables, Environment Variables and various context properties like

context.Data.Properties, context.Properties, context.States, etc. can also be examined as the user steps

through each Process Step within a Process.

& Neuron ESB Explorer —[olx|
B Vew Tods Hep

: [| &~ | ® Rumning - | Configure Server | Category Fitter B |

You Q:\WebC
— ColdWaterVETO X | Emitenwars X | UnZip Files X | Order Process X | Emitenvars - C# Class X | Emiténwars - C= X ' ReadOnly:EmitEnvVars - 59d7a3a6 X -
CREX) ﬁlemv:ew o
75 Dsservicestep = OlbOD a2 BEFFE '“‘zla
4%} Dynamic_Validate Tran 15 B protected override void [Stop Debugging [.Esb. ge> context)
4o} EmaiProcessor 16
4 EmitEnwars 17 // T000: implement custom pipeline step here.
&) Generic Handlers 18
49 Exception Hander. || @ 1o
4% Exception_Hander_ 2)
= gi::;‘xﬁn%:""“"‘g 21 private void PrintThis(PipelineContext<Neuron.Esb.ESBlessage> context)
% InboundFailresSpltBat fi {
v} 150N Sample - . .
) LNQ Sanvle 2 string value = string.Empty;
4} MontagualcatorEnviche ||/ @ 2 fstring valuenane - string. EnptyH
) MyAudits 2 foreach (var s in context.EnvironmentVariables)
&) MyFolder 27
44" Order Process 28 context.Instance.TraceInformation(string. Format("key={0}, value={1}", s.Key, s.Value));
49 MiNewprocess © 2 value = s.Value;
) New Folder 2 30 valueName = s.Key;
53 New Folder 3 n 3
) Service 2 3
49! OutboundsmipFieN 3 }
-4u parallelTest 3 [y
45 New Process 1
40! Serviceprocess
49} SetFTPFiename2
44 TestEnvronment 23 it ch1
44! TestoDec
4%} Unzp Fies Quick Watch X o
i Vestep Neme [Valve <
5 WhiewithBreak
¥ ZoFie C5$550000 tem.Collecti s tr tem.Sir
58450001 True
Kl value “netmsma:/flocalhost/private/accountclient.sve'
valueName “AccountPublisher”
D v S—
this myNamespace.MyClass
g Repository context Neuron Pipelines.PipelineContext' 1<Neuron.Esb.ESBMessage>
Ppsine Neuron Pipelines.Pipeline’ 1<Neuron Esb.ESBMessage>
7@ Comectons Propertes tem.Collect *2<System.sti tem.Objec>
Data Neuron.Esb.ESBMessage
Seauity Environmentvariables Coll *2<System.st tem.str
@ “AccountPublisher” “net.msmas//localhost/private/accountclient.svc"
DebtCollection” “net.msma:/flocalhost/private/debtcollectionsve’
- # "LoanManagement™ “net.msmq:/flocalhost/private/loanmanagement.svc”
ER— : 'Ne\:nnAud\(Cannemm:Smng' True” i |
@ “SmipAlertServer” “localhost”
© : —

 Neuron ESB Explorer
B Vew Tods Hep
[| &~ | @ Running + | Configure Server | Category Fiter

You are working offine. Q:\WebCast\Solutions\DemoSolution

ColdWateVETO X ' EmitEnvVars X | Undip Fies X | Order Process X | EmitEnVars - C= Class X | EmitEmiars- C= X - x
P 200m ~ B mport B Export Eprint [save [7] copy

86 Jl[~=
75 Dsservicestep
@ VT = =
 Frea s = G
& & Error Handing
4% Emitenvars
5 Generic Handers] Exception
45 Exception_Hander @ Rethow
-8} Exception_Hander_ c# Class & & Flow Control
45 getconfigForTesting @
44 GetyInfo
4%} InboundFaiuresSpitBat @ Concel
44 50N Sample @ Deason
4 LINQ Sample £ Exeaute Process
4% MontagValdatorEnriche 2 for
2 MyAudits =
5 MyFolder . For Each
4% Order Process
5 MYNewprocess
5 New Folder 2 - = Misc
-5 New Folder 3 Referenced Assembiies
9 Service o Name EmitEnwVars
49 OutboundsmipFien Trace Description
49} ParallelTest Category
5 New Process 1
44 serviceProcess
45 SetFTPFiename2 -
4} Test Environment -
49} TestoDBC a]
49} UnZip Fies Type | step [Text =
45! ValdateMeAgain C= Class prep—s
<o vBstep) csCss key=DebtCollection, value =net.msmas locahost/private/debtcolection.sve
&8 Whichithereak) csCass , value=)
i zore = C# Class = ilnitl The name of the process
« o) C#lass , value=r . =
I —
g Repository Name. Value [-
3 Neuron.Esb.Pipelines.EsbMessageTraceMessagePpdinestep
5-% context Neuron Pipelines.PipelineContext” 1<Neuron.Esb.ESBMessage>
Ppeine Neuron Pipelines Pipeline’ 1<Neuron.Esb.ESBMessage>
Properties tem.Collecti - 2<System.st tem.Objed>
Data Neuron.Esb.ESBMessage
Environmentyariables tem.Collect *2<5ystem.st tem.st L
“AccountPublisher” “net.msma://localhost/private/accountclient.sve”
@ DebtCollecton” “net:msmaz//localhost/private/debtcollectionsvc’”
“LoanManagement” *netmsmaz//localhost/private/loanmanagement.svc’
#_Nevronb i nonachnnSirinn® True”

Tabbed View of Business Processes

In previous versions of Neuron ESB, only one Business Process could be opened within the Process
Designer at time in order to be worked on. If a user needed to copy elements of one process over to
another, the first process would have to be closed before the second process could be opened and
viewed.

Neuron ESB 3.1 introduces a new Tabbed Dialog view of Processes within the Process Designer. This
allows multiple Processes to be opened at the same time, allowing the user to navigate between them
all by simply selecting their respective tabs. Additionally, the tabs are dock able and detachable, allowing
several processes to be arranged within the same window.

& Neuron ESB Explorer =1k}
File View Tools Help

‘[| &+ | @ Running + | Configure Server | Category Filter [all 7

You are working offine. Q:\WebCast\Solutions\DemoSolution

QP EX £ z0om ~ B 1mport & Export @ffBack [EPPrint QPHEX P z0om ~ FImport B Export [EfPrint [save [Copy
(2

7]

3 186

2P St = VETOPattern Process Steps

Process Steps

ApReply

Audit Publish Testing
AuditProcess : —=
ClientReply v B M B Mi
Collection Integration I e E isc
44 out_Canonical_To_Service

Referena AT Referenced As:
Q Name VETOPatteri| Name Do Regeust Stuff|
Descriptic Description
MySchema
’ Category CollectionIn| = Category
Detect Duplicate Messages

Do Reqeust Stuff O —
DSServiceStep alid Invalid
Dynamic_Validate_Transform
EmailProcessor

EmitEnvVars

Generic Handlers

{5} Exception_Hander_Cancel Category ‘ e ‘ —
4%} Exception_Handler ReThrow = A category used to The name of the process
getconfigForTesting) describe the process D

GetMylnfo

InboundFaiuresSpitBatch
ISON Sample AuditProcess X

LINQ Sample @D %= X[Pzoom v Bimport BExport EPprint [save [copy

MyAudits Process Steps

MyFolder

4} Order Process1 P
4%} MYNewProcess AuditProcess
&) New Folder 1

(=5 New Folder 2 ‘

: 4)\
748 proces QMM_":‘ Do Reqeust S.. 29 I’r(ooess Steps ‘

i}
HPeees

4@} In_Account_Audit
4@’ In_Account_Router
4% In_Account_SoapHeaders
4@ in_Account_To_Canonical

S0

MyTransfor
m

m
¥R RIS

Rethrow

(IR R R o e el)

R

&

= &) Flow Control

(-5 New Folder 3 =l

S5 carvica.

[? Messaging)
g Repository =
=
?‘ Connections.
W Security
N

4 Name
Depl t
g vmen The name of the process

& o foe IS oyt !

E Referenced Assen
Name AuditProcess

Description
Category

Modified _:

Or processes can be detached and worked on in dedicated windows:

 Neuron ESB Explorer
Ele Vew Toos Hep

You Q:\WebC:

Processes

2166

Order Process1 X

: (& |- | @ Running ~ | Configure Server | Category Fitter [al v

4 AP Suff
4} ApReply
4%} Audit Pubiish Testing
4%} AuditProcess
4% ClentReply
5 Collection Integration
49} In_Account_Audit
49} In_Account_Router
4! In_Account_SoapHeaders
4% in_Account_To_Canonical
4% out_Canonical_To_Service
4%} Detect Duplcate Messages
4+ DoRegeust Stuff
4%’ DsserviceStep
4} Dynamic_Validate_Transform
4%} EmaiProcessor
4%} EmitEnvVars
&) Generic Handlers
494 Exception_Handler_Cancel
4} Exception_Handeer_ReThrow
4%} getconfigForTesting
< GetyInfo
4%} InboundFailuresSpitBatch
4} JSON Sample
4%} LING Sample
4} MontagValidatorEnricher
4} MyAudits
& MyFolder
4% Order Process1
<&} MYNewProcess
5 New Folder 1
&) New Folder 2
=45 New Folder 3

Qb#EX P zoom + Fimport & Export EPprint [}save [] copy
‘Order Processt Process Steps
=)) Process Steps
ez & & Error Handing
& Exception
@ Rethrow
R & S Flow Control
= = ‘ [VERS
== VETOPattern
e - @IDWE XD Proom - Fimport SExport EPerint [save [] copy
(VETOPattern Process Steps
o =) 5 Process Steps
== B & Error Handing
£ Exception
== : @ Rethrow
— M,:;; = & Flow Control
(© break
= @ cencel
AN ¥ Decision
£} Execute Process
. ‘ 4
% - 2. For Each
o T} Parallel
D Retry
Bindings. (Collection)
B General
(i) Name. MyTransform
Disable False
Type |step [Text I
EnableDocumentFunction False
EnableScript False
— (XSLT Document)
(iR} Parameters (Collection)
Type |step Text XSLT Name SourceToCanonical
Name

The name of the pipeline step

Lastly, when a user navigates to another part of the Neuron ESB Explorer to work on any other part of

the solution and later navigates back to the Process Designer, all previously opened Processes will still

be opened in their respective tabs and locations. If there was a test message submitted for a specific

process using the “Edit Test Message” dialog, that message will still be maintained and loaded in the

“Edit Test Message” dialog when used with the specific Process.

Tabbed View of Language Code Editors

In previous versions of Neuron ESB, the C# Code Process Step opened as a Modal window within the

Neuron ESB Explorer. This required users to close the editor before any other activity could be done

within the Neuron ESB Explorer.

Neuron ESB 3.1 adds the Code Editors to the same shared Tabbed Dialog view that the Processes use.

Now multiple Code editors (JavaScript, C#, C# Class and VB.NET) can be opened side by side in their own

tabs, allowing users to navigate easily between Code Editors and Processes

_lojxi

Flle View Tools Help

H E %5~ | ® Running ~ | Configure Server | Category Filter |Al [~

You are working offine. Q:\WebCast\Solutions\DemoSolution

Processes Order Process1 X EmitEnvWars X EmitEnvVars - C# X - X
ERERY) J File E(lm \‘hew S -
= P sur i@l e B> = 2 |EE[FF X B
<%’ ApReply . o .
% Audit Publish Testing void OnExecute(PipelineContext<Neuron.Esb.ESBMessage> context)
49} AuditProcess
4} ClientReply 1 string value = string.Empty; j
(=) Collection Integration 2 string valueName = string.Empty;
4%} In_Account_Audit 3 foreach (var s in context.EnvironmentVariables)
4% In_Account_Router {

0

In_Account_SoapHeaders
in_Account_To_Canonical

context.Instance.TraceInformation(string.Format("key={@}, value={1}", s.Key, s.Value));
value = s.Value;

€
N own o

4o+ out_Canonical_To_Service valueName = s.Key;
4%} Detect Duplicate Messages g}
4« Do Regeust Stuff 9 System.l
495 DSServiceStep 10 Talariables[valueName]);
4% Dynamic_validate_Transform 1
o} EmailProcessor - ~ X
4o} EmitEnvVars 2 3 Action<>
-5 Generic Handlers %3 ActivationContext
4% Exception_Handler_Cancel 4 Activator
4%: Exception_Handler_ReThrow %4 AggregateException
4o} getconfigForTesting LI %4 AppDomain
P 3 R
-4 AppDomainInitializer =
\9 Messaging “| 44 AppDomainManager | LI—I
=@ AppDomainManagerInitializationOptions «
g Repository ¥
; Ln9 Col 8 Cchs
ad Coonecians Line | Columnl Description
U E— 10 1 The type or namespace name 'context’ does not exist in the namespace 'System'’ (are you missing an assembly reference?)

ﬁ(' Processes

g Deployment
G Activity 4« | >

Modified _.:

Extended Language Support

Neuron ESB 3.1 introduces support for new languages as well as expanded
support for C# and the overall code writing experience. Users can now
write VB.NET, JavaScript or full C# classes directly within a Business i |
Process without any need to generate and reference .NET assemblies. All

languages are represented by individual process steps under the
Languages folder of the Process Step library

A new developer toolbar has been included with all the Code Steps

File Edit View

@ b0 Az ERE

s
Ll
v
Ll

X

This provides developers access to common tasks such as undo, comment, format, indent, delete all
breakpoints, add assembly references, display line numbers, etc.

We have also added support for adding breakpoints on a specific line of C# (within the C# or C# Class
Code Steps) and VB.NET Code Step. Developers can add breakpoints on code lines which will cause the
Neuron ESB debugger to stop on the specific line when it hits, similar to what developers experience
within Microsoft Visual Studio. Once broken into the debugger, a modified Toolbar will appear allowing
the user to continue, step over or stop the debugging process. While in Debug mode, developers can
view the state of context and process within the Debug Window.

File Edit View

I Y

Also, a new compile window has been added to all the Code Steps that allow users to see the design

time compile error, line number and column where the error is occurring as shown in the C# Code Editor
Image below:

Order Process1 X EmitEnvVars X ' EmitEnvVars - C# X v X
File Edit View
; oS — Q0 |[=] =] | 2= $
QlhODI>Al= 2 |EE FEX B
void OnExecute(PipelineContext<Neuron.Esb.ESBMessage> context)
1 string value = string.Empty; j
2 string valueName = string.Empty;
3 foreach (var s in context.EnvironmentVariables)
4 A
5 context.Instance.TraceInformation(string.Format("key={@}, value={1}", s.Key, s.Value));
6 value = s.vValue;

valueName = s.Key;

}

lontext1.Data.FromString(context.EnvironmentVariables[valueName]); |

=
® 0 o

[
-

4] | _’Ij

}
NI0 OOl T THT
(Line I Column I Description]
9 1 The name 'context1’ does not exist in the current context
« | >l

VB.NET

Writing VB.NET code within a Process is as simple as dragging the VB.NET Code Step onto the Process
Designer, right click and selecting edit. Users will receive the same experience as if using the C# Code
Step:

VBStep - VB.NET X | ColdWaterVETO X | EmitEnvVars X | UnZip Files X | Order Process X | Order Process - JavaScript X | ¥ X
File Edit View

Qb Dva =2 EEEFEEX| B

Sub OnExecute(ByVal context As PipelineContext(Of ESBMessage))

1 bim DictObj As New System.Collections.Generic.Dictionary(Of Integer, String) j
2
3 DictObj.Add(1, "ABC")
4 DictObj.Add(2, "DEF")
[} B0 ctObj.Add(3, “GHI™)
6 DictObj.Add(4, "JIKL")
7
8 For Each kvp As System.Collections.Generic.KeyValuePair(Of Integer, String) In DictObj
9 Dim vl As Integer = kvp.Key
1@ Dim v2 As String = kvp.Value
L] 1 (Local Variable) @ kvp As System.Collections.Generic.KeyValuePair(Of Int
12 Next Defines a key/value pair that can be set or retrieved.

o
|4l | »

End Sub

Line | Columnl L

JavaScript
Writing JavaScript directly in a Process is just as easy. Drag a JavaScript Code Step directly onto the
surface of the Process Designer, right click and select edit to open the Code Editor:

~ VBStep - VB.NET X | G VETO X | Emi X | UnZip Files X | Order Process X ' Order Process - JavaScript X | ¥ X
File Edit View
R EEE EEEE LT
iy /= I—
2f| * This code step expects message.text to contain a list of names —
38 * separated by semicolons. The code step will parse out the names
48 * and will output an XML blob containing the names in the order
5 * 'last-name, first-name'.
6 */
7
8||[Efunction parseContacts(contactlist) {
9 // Use a regular expression to parse the list of names.
10 var contactsPattern = /\s*;\s*/;
11 return contactList.split(contactsPattern);[
1|3 _
13
14| [FIfunction reformatContacts(names) {
15 // The namePattern regular expression will parse the contact's
16 // first and last names and optional email address.
17 var namePattern = /(\w+)\s+(\w+)(\s+<(.+)>)2?/;
18 var newContacts = [];
19 for (var i = @, len = names.length; i < len; i++) {
20 console.log('Original name: ' + names[i]);
21 var name = names[i].replace(namePattern, '$2, $1');
22 var email = names[i].replace(namePattern, '$4');
23 newContacts.push({name: name, email: email});
24 console.log('New contact: ' + newContacts[i]);

Ln11 Col 50 Ch 50

C# Classes

The new C# Class Code Step offers some advantages over the existing C# Code Step that previously
shipped with Neuron ESB. The C# Class offers developers a way to more easily organize their code,
reducing its complexity. It also allows developers to add using statements and define their own name
spaces and new classes. The C# Class Code Step provides an existing template that developers can
modify by changing the namespace and class names. From there developers can add additional methods
or new classes:

ColdWaterVETO X EmitEnvVars X | UnZip Files X | Order Process X ' EmitEnvVars - C# Class X v X
File Edit View
OlbODval= 2 |EBEFFEX B
: =l
5 [using System;
6 |using System.Ling;
7 using Neuron.ServiceModel;
using Neuron.Pipelines;
9 |using Neuron.Esb;
10
11 [Elnamespace myNamespace
12 | {
13 O public class MyClass : Neuron.Pipelines.PipelineStep<Neuron.Esb.ESBMessage>
14 {
15 [protected override void OnExecute(PipelineContext<Neuron.Esb.ESBMessage> context
16 {
17 // TODO: implement custom pipeline step here.
18
°
20 }
21 [private void PrintThis(PipelineContext<Neuron.Esb.ESBMessage> context)
22 {
23
24 string value = string.Empty;
° tring valuename = string.cnptyl =
26 foreach (var s in context.EnvironmentVariables)
27 {
28 context.Instance.TraceInformation(string.Format(“key={@}, value={1}", s.
°
20 v=liaMama — ¢ Vau- =
Il | _'lJ

Ln 16 Col 10 Ch4

Line | Columnl Description

Category and Descriptions

All processes now have both a category and description property. If assigned a category, the category
selected in the Category Filter toolbar dropdown of the Neuron ESB Explorer will automatically filter the
view of processes in the Process Library.

& Neuron ESB Explorer
Ble Vew Toos Hep

= [%~ | @ Running + | Configure Server | Category Fi

You are working offine. Q:\WebCast\Solutions\DemoSolution

Processes

366

Order Process1 X

P | > 3% G X

|¢er Colectionintegratior |

OPattern X

P 2oom ~ Fimport P Export @Back EPPrint [save [copy

5-Q) MyFolder
& Order Process1
5 New Folder 1
S New Folder 2
4%} VETOPatter

D v
§ o
W Connections

VETOPattern

8

MySchema

=Iolx|

-x

51) Process Steps 2
B & Error Handing
£ Exception
@ Rethvow
&1 & Flow Control
() Break
¥ Cancel
Dedsion
1 Exeaute rocess
Q. For

2, ForEach

[T Paraliel
D Retry
¥ spit
© Timeout
- =
B misc
Referenced Assemblies

[~

|step

[Text

-
g Deployment
& oy ‘

Category
A category used to describe the process

Business Process Folders

Users can now create folders to organize and store their processes in. An
“Add Folder” button has been added to the Process library toolbar. Sub
folders can be created by right clicking on an existing folder and selecting
“Create Folder” from the context menu. Users can also rename the folder by
simply clicking on the name and in the process library for it to become

editable.

Once folders are created, existing processes can be dragged and dropped

& Neuron ESB Explorer

Fie View Tools Help
& | @~ | @ Rumning + | Configure Server | Cate
You are working offine. Q:\Pev\3_0_BranchHelp\Sam

Processes

@) 66
(-5 MyApplication
Y

Create Folder
Create Process
Delete

Open Process

into the folders. Once the folder organization is complete, the solution must

be saved.

Business Process Step Folders

In Neuron ESB 3.1 all process steps have be reorganized into a folder hierarchy with the following

categories (folders). All new process steps are highlighted in blue italics:

Process Step Folder Process Step

Error Handling

Exception
Rethrow

Flow Control

Break
Cancel
Decision
Execute Process
For

For Each
Parallel
Retry

Split
Timeout
Transaction

While

Languages C#

C# Class
JavaScript
VB.NET

Message Audit
Compression
Detect Duplicates
Excel to XML
JSON

Pop

Push

Set Property
Trace

Security Decrypt XML
Encrypt XML

Sign XML

Verify Signed XML
Services Publish

Rules — WF
Service

Workflow
Storage MSMQ

ODBC

Store

Table Query

Xml Query

XML Transform — XSLT
Validate - Schema

Business Process Navigation

Reusable processes are an important development pattern. Neuron ESB Processes can be reused/called
by other existing processes by using the Process Execution Process Step. If a user double clicks on this
Process Step, the Process that it calls will be displayed along with a Back button on the toolbar. This
provides the developer a way to easily navigate back and forth between parent and child processes.

He Vew Toos Hep

(el | & | @ Ruming - | Configure Server | Category Fiter [Al gl
You are working offine. Q:\WebCastSolutons\DemoSolution
Processes Audit Publsh Testing X | EmaiProcessor X | EmitEnwars X | Order Processi X | Exception Handier Cancel X ' VETOPattern X -x
5 = Zoom + B mport. & Exbort @flack Eflprnt [save [
EASE-X:) ‘995[X |5 2 Bimpot § @ seve [cony
A8k AP stuft - VETOPattern
) ApReply
B ot Tty @) Eror Handing
o] Excepton
@ Rethvow
& & Flow Control | |
O break
@ concal

 Decsion
£ Breae process

45} EmaiProcessor
49} EmitEnvVars
6 Generic Handiers.
) Exception_Hander_Cancel
Re

) InboundFailuresSpitBatch

4@} JSON Sample

% nQ sample

54 MontagualdatorEmicher
™

Desarpton
Category

Name.
The name of the process:

Business Process Printing and Save Image
All processes within the Neuron ESB Process Designer can now be saved as a JPEG or Printed as a report
through the new Process Designer’s toolbar:

¢ Neuron ESB Explorer = ||:l Ll
File View Tools Help

E %5~ | ® Running ~ | Configure Server | Category Filter [all 2

You are working offline. Q:\WebCast\Solutions\DemoSolution

Processes Audit Publish Testing X VETOPattern X - X
S NS G b %E X S z0om ~ & Import & Export [EPPrint [save [7] Copy] ‘
I - = — J

g AP Stuff Al VETOPattern Process Steps
4% ApReply [) Process Steps -
< érdlﬁgo;ess & &) Error Handing
& ClientReply
& Collection Integration Ty £ Exception

Clicking the “Save” button will prompt the user for a location to save the JPEG image of the process to.

Clicking the “Print” button will display a Print Preview form with an image of the process along with any
custom code that any Process Step may contain. All custom code is separated in the report by the name
of the Process step that contains it and is formatted with Rich Text.

laix] HeuronPocess Report Viewer il
] 5
'
r—— T odepowst =
[Process Action - Excel]
My vB.NET]
value = "Record”
B f
[process Action? - service |
= [T |
: !
Order function parseContacts(contactList) { i
.
return contactList.split(contactsPattem);
p ¥
~| fiunctinn refamatCantactelnamae) { =
» ‘ | o
Business Process Steps
Extended Design Time Testing Support
In Previous versions of Neuron ESB, almost all Process Steps could be tested directly in £ it publish.)
the Process Designer with the exception of the Audit and Publish Steps. In Neuron ESB
3.1, the Audit and Publish process steps have been modified to support design time B
debugging within the Neuron ESB Business Process Designer. The only requirement is AL
that the solution which is to be tested must be hosted and running in a Neuron ESB
runtime on the local machine. The Neuron ESB Explorer can be opened in either online i ‘
FPublish
or offline mode for this to work. Additionally, when submitting a message to test, a
valid Sourceld and Topic must be provided in the “Edit Test Message” dialog. These are |

used to create a connection to the live Neuron ESB runtime service hosting the solution:

¢ Edit Test Message

& Format [.gLoad Message [giLoad File [Custom Properties [} Environment Variables | Send Xml

r Message 2c5017b1-bc38-4b01-8b5d-c6¢c320f55baf

Value <TestMessage>This is a test. </Tesc!{essage>
Machlne
Message Id 2c5017b1-bc38-4b01-8b...
ParentMessageld
Part 1
Parts 1
Priority 0

Relates To

Reply To
Reply-to Id
Reply-to Party Id

Reply-to Session...

RequestHeaders...

Routing Slip

Semantic Multicast

Sequence 0

Session Id
SID

Source Id IrvinePub

< I_vl;l

Extended Xml Schema Validation Process Step
In previous versions of Neuron ESB the “Validate-Schema” process step f Schema Validation h
only supported file based locations for the “schemalocation” attribute for
schemas that contained import or include references. For example, when
a WSDL is downloaded, the schemas included in that WSDL will often
import from a different schema, using a “schemalocation” attribute to Valid Invalid

&

Schema

direct the schema parser on where to find it. Neuron ESB previously only
supported a file-based location, such as this:

Cancel

<xsd:schema xmlns:tns="urn:partner.soap.sforce.com"
xmlns:ens="urn:sobject.partner.soap.sforce.com"
xmlns="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
targetNamespace="urn:partner.soap.sforce.com"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:import schemaLocation="C:\SchemaS\Accounq_sObject"
namespace="urn:sobject.partner.soap.sforce.com" />

At runtime, if there was a Validate-Schema process step, the import (or include) would be resolved to
the local file system.

In Neuron ESB 3.1 support has been added to resolve schema locations to the ESB Repository, like this:

<xsd:schema xmlns:tns="urn:partner.soap.sforce.com"
xmlns:ens="urn:sobject.partner.soap.sforce.com"
xmlns="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"

targetNamespace="urn:partner.soap.sforce.com"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:import schemaLocation="esb:Account_ sObject"
namespace="urn:sobject.partner.soap.sforce.com" />

At runtime, if the schemalocation attribute starts with esb: Neuron ESB will look for the schema in the
configuration’s repository. The name following the esb: is the name of the schema in the repository.

Exception Pattern built into Audit Process Step

In previous versions of Neuron ESB, users were encouraged to adopt a reusable exception management
pattern to employ in all of their processes. Generally this would entail creating a generic process that
would handle and audit the exception and that process could be called from the Catch block of any
other process using the Process Execution process step. Part of that pattern included the enrichment of
the original exception using a C# Code Process step similar to this:

PipelineException parentEx = (PipelineException)context.Properties["PipelineException"];

string newExceptionMessag =
String.Format (System.Globalization.CultureInfo.InvariantCulture,
"\r\n\r\nProcess Error Message: {0} \r\n\r\nSource Process: {l}\r\nSource
Process Step: {2}\r\nSource Error Message: {3}\r\n\r\n",
parentEx.Message,
parentEx.Pipeline,
parentEx.PipelineStep,

parentEx.InnerException.Message) ;

context.Properties["CurrentException"] = new System.Exception(newExceptionMessag) ;

With Neuron ESB 3.1 this is no longer necessary. When a failure occurs and the message is audited using
the Audit process step, the parent process name, source process name (where the error occurred) and
the process step name that generated the exception are now captured. Also, the appropriate inner
exception is retrieved if a child process generated the exception. All of this information is now recorded
in the Failed Message Report and can be viewed in the Message Viewer.

© Failed Message Viewer x|

[®) Republish |

!i 1 Failled Message

s
Irvine - 2c5017b1-bc38 B Date: 2/28/2014 3:18:48.1770 PM

Type: System.Xml.Schema, XmiSchemaVal
Message: |Parent Process: New Process 5 ﬁl

Source Process: ColdWaterVETO
ok
2/28/2014 3:18:48.1770 PM : Parent Process: New Process 5

ISource Process: ColdWaterVETO
Message Body | Source Process Step: MySchema

<TestM ption Type: System.Xml.Sch i

[Exception Message: The TestMessage' element is not dedared.

[Exception Trace: at Neuron.Pipeline: ipel 5" 1.01 sender, Valic
at System. Xml.Schem: code, String arg)
at System.Xml.Schema. 5 localName, String Jri, XmiScher
at System. Xl 0

at System. Xml.XsdvalidatingReader.Read()
at Neuron.Esb.Pipelines. EsbMessageSchemaValidationPipelineStep. ValidateLocal (XmiReaderSettings settings,

0

The source process name (where the error occurred is also captured within the database as a custom
property when using the Audit Process Step in Failure mode (action property).

x|
[®) Repubish |
e
Irvine - 2¢5017b1-bc38-4b01-8b5d-c6c320f5... Date: lm
Type: System. Xml. Schema, XmiSchemaVal
Message: [Parent Process: New Process 5 il

Source Process: ColdWaterVETO
Source Process Step: MySchema

Message Body | Neuron Properties {UUSESii FFoperses
G | Name [Value

Close

When using the Audit Process step in either Receive or Send mode (action property), the property will
contain the name of the current process the Audit Process step is executing in.

Simplifying Pop/Push Process Steps

The Pop and Push Process Steps allow users to simplify the saving and restoration of a message at
runtime within a Business Process. In many occasions, it may be desirable to save the original incoming
message (Push) before it is transformed, enriched or otherwise changed as part of the process and when
finished, restore (Pop) the message to its original state.

In previous versions of Neuron ESB, developers would be required to use a C# Code Step directly
following the Push Process Step. This Code Step would have one line of code i.e.:

context.Data = context.Data.Clone(true);
In Neuron ESB 3.1 this is no longer required.

Extending the Service Process Step

In Neuron ESB 3.1 the Service Process Step has been extended to support WSDL extensions as well as
maintaining its current support for WCF “Metadata Exchange Endpoints”. In previous versions of Neuron
ESB, if the either the Metadata Url property was used or, a user selected to import the metadata by
selecting “Select Endpoint...” from the context menu, only “Metadata Exchange Endpoints” could be
used.

In Neuron ESB 3.1, WSDL support has been added, allowing non WCF services to be easily accessed
through use of WSDL at runtime. If using the Select Endpoint metadata wizard (displayed below), if an
endpoint is entered without either a WSDL or Metadata Exchange Endpoint, WSDL will be assumed and
that extension will be automatically entered for the user:

Select Endpoint Select Endpoint
Select Endpoint UserName Select Endpoint UserName
Password Password
URL: Jhtte: 33/Design_Time _ ice/Service 1/2wsdl Load URL: Jhtte: /Design_Time _ ice/Service 1/ Load

Services Operations Services Operations

=) Servicel
| BasichittpBinding_IService1

4 2

Also, if a WSDL or Metadata Exchange Endpoint is not found, an error will be displayed to the user. In
previous versions of Neuron ESB, the wizard would silently fail, displaying no error at all.

Lastly, the Service Process Step can still be manually configured to call any WCF or NON WCF service
endpoint using its associated property grid. This allows service calls to be made without have to retrieve
and parse the Metadata for each call.

New Timeout Process Step

The Timeout Process Step executes the contained Process Steps on a background thread. To succeed,
the contained Process Steps needs to complete successfully before the timeout period expires,
otherwise a timeout exception will be raised on the Business Process.

For example, if the Timeout Process Step is configured for 5 seconds, the contained steps must complete
their execution before the 5 seconds expires, otherwise a timeout exception will be raised and the

Business Process may terminate. Even though the contained Process Steps are { New Process 5
executed on a background thread, the Timeout process step executes
synchronously. The Business Process will not continue until either the
contained Process Steps complete or a timeout occurs.

The Timeout Process Step is compatible with the use of transactions, such as
transactional MSMQ topics. If a transaction is active when the Business
Process runs, the contained Process Steps will execute within the context of
the transaction that the Business Process is participating in. Failure of the ‘ I
contained Process Steps will cause the transaction to roll back and the
message will be returned to the party’s message queue.

Although this cannot generally be used to abort a poorly constructed looping
scenario, a cancellation token has been built into the context object which can

trigger the termination of the processing occurring in the background thread.
This will only happen between Process Steps.

For example, the Timeout Process Step would not terminate the following constructed loop if used in a
C# Code Process Step:

while (true)

{
// Do something here
System.Threading.Thread.Sleep (1000) ;
context.Instance.TraceInformation ("hi") ;

}
However, if the loop were reconstructed to use the Cancellation Token, the loop (and the background

processing thread) will be terminated directly by the Timeout Process Step by using the
IsCancellationRequested property of the CancellationToken object of the context object.

while (!context.CancellationToken.IsCancellationRequested)

{
// Do something here
System.Threading.Thread.Sleep (1000) ;
context.Instance.TraceInformation ("hi") ;

}

New Decrypt/Encrypt Message Process Steps

The Encrypt Message and Decrypt Message steps employ the XML Encryption standard to protect XML
messages being sent between parties. The Encrypt Message and Decrypt Message process steps employ
the AES encryption standard based on the Rijndael encryption algorithm to protect sensitive data from
being exposed to unauthorized parties.

The Encrypt Message and Decrypt Message process steps will look up the encryption key from the
Neuron ESB configuration. Developers may also specify a custom initialization vector that will be used to
enhance the security of the encrypted data. Using the Encrypt Message step, it is possible to either

encrypt the entire XML message, or to encrypt a fragment of the message specifying using an XPath
expression.

New Sign/Verify Message Process Steps

The Sign Message process step uses the RSA algorithm to attach a cryptographic signature to an XML
message. The Verify Message process step will use the same RSA algorithm to verify that a signed
message is valid. Both the Sign Message and Verify Message process steps use X.509v3 certificates
stored in the Windows certificate store and configured in the ESB configuration to sign or verify the XML
message.

The Sign Message process step requires the presence of a private key attached to the certificate in the
certificate store. Using the private key, the Sign Message process step will use the XML Signature
standard to calculate the cryptographically-secure signature for the message and will add the signature
to the XML body of the message.

The Verify Message process step will use the public key associated with a configured X.509v3 certificate
to verify that the signature attached to an XML message is valid and was signed by the private key
associated with the public key that is used to verify the message’s signature.

Connectivity
Topic Transports

RabbitMQ Clustering for Topics

In Neuron ESB, Topics can be configured to use any number of transports including TCP, Peer, Named
Pipes, MSMQ and RabbitMQ. MSMQ or RabbitMQ would typically be used if durable/persisted or
transacted messaging was required end to end.

In Neuron ESB 3.1, RabbitMQ support has been substantially upgraded to support Clustered/Mirrored
RabbitMQ environments.

¢ Neuron ESB Explorer ol x|
File View Tools Help
E R~ | @ Stopped ~ | Configure Server | Category Filter vI |
You are working offiine. Q:\WebCast\Solutions\DemoSolution
-
Deployment &+ Deployment Groups
B ® Settings)
Nt LookFor: [~ Find |
Q Zones
5 s Environments [INew [)Copy €3 Delete |(2)Hide Detail ‘
(38 Deployment Groups | ‘ Deployment ‘ Category ‘ Zone ‘ Description =
4 Environment Variables | 3 N Development General Enterprise | Run everything on local machine
E & Manage » (W Production General Enterprise ~|
1 patabases) Apply () Cancel | [Z)Add Server [54Remove Server Viewing Deployment Development
|14 MsmQ
[T RabbitvQ General I Machines | Environment l MSMQ RabbitMQ I
” Servers Manage all Rabbit MQ Servers particpating in a duster
Server | Port | Mgmt Port | Username | Password
localhost 5673 15673 quest prererrereren
localhost 5674 15674 . prorserrrererey
¢ Add Connection !'
@ — ﬁ Rabbit MQ Connection Information
9 T server
?‘ Connections Port: -1
Mgmt Port: 15672
Security
— Username: [guest
“y Processes Password: Issxxs
-
L_ Deployment 4of4
s Activity Al # A B R § T U V W X Y

In clustered RabbitMQ environments, mirroring of all Neuron ESB infrastructure queues should be

configured through the RabbitMQ administration portal. Once this is done, each member of the cluster
should be entered in the RabbitMQ tab of the Neuron ESB Explorer’s Deployment Groups section as

displayed in the image above.

New property options on the Topic’s transport network property page determine the behavior as well as

level of reliability that will be provided if either a member of the cluster or all members of a cluster fail.

These property options can also guarantee once only delivery of the message.

& Neuron ESB Explorer

Fle View Toos Help

:[@ | @~ | @ Stopped ~ | Configure Server | Category Fitter [l -

You are working offiine. Q:\WebCast\Solutions\DemoSolution

Messaging
B » Tasks
A GetStarted
£ Publish and Subscribe
9 Topics
@ publishers
& subscribers
$ conditions

Repository.

?‘ Connections
@
g processes
g Deployment
S

lookFor: [Find

=lolx]

@ Apply @ cancel

General Networking | Auditing | Security I Dependendies |

Editing Topic Account |

B General

Transport: Recoverable

[RabbitMQ v

~| [

Reliability Mode
Detect Duplicates
Detection Window (minutes)

Publish Throtting: [None

Never ~

Compression:
Report Duplicates

B Publish

Resubmit Unacknowledged Messages
B Receive

Time To Live

Failed Message Path

Auto Adnowledge

Batch Size

True
PublisherConfirms

Reliability Mode
Controls the level of reliabiity for sending and
or "Transactional can E

receiving
. ‘PublisherConfirms' uses an asynchronous
while "Transactional' forces a commit/rollback on each message:
‘PublishConfirms' require 'Recoverable’ set to true.

ing messages. Either "None', PublisherConfirms'
Ack/Nack prof
published. "Transactional’ and

110f 11 selected.

Al # A B C D E F G H I J K L M NOZPQR S T UV W

X Y z

Modified ;;

The RabbitMQ transport for a Topic can be configured to run either in PublishConfirm (asynchronous
type of transaction support based on acks/nacks), Transactional or no Transaction mode. It can also be
configured to detect and discard any duplicate messages as well as resubmit all unacknowledged
messages once connectivity is restored to the cluster if one or all machines in the Rabbit MQ cluster fail.

For example, consider the case where there are 2 RabbitMQ nodes configured in a mirrored cluster. If
messages were being published and received through Neuron ESB while one of the nodes went down,
the underlying Neuron ESB Runtime would automatically catch the failure condition, report it, and
seamlessly roll over and send/receive messages to the remaining node in the RabbitMQ cluster. The
original failed message would be resent to the surviving node and (if using PublishConfirms), any
unacknowledged messages will be republished to the surviving node as well to ensure no message loss.
Any messages that fail to be redelivered would be written to the Neuron ESB Audit database where they
can later be resubmitted.

If both nodes go down, once the primary node is restored, all unacknowledged messages (if using
PublishConfirms), will be resent to the primary node. Any failures will be written to the Neuron ESB
Audit database where they can later be resubmitted.

Miscellaneous

RabbitMQ Dead Letter Monitoring — Neuron ESB automatically monitors a dead letter queue for all of its
infrastructure queues. If the Neuron ESB dead letter processor fails on startup, any endpoint that
successfully starts up after the fact will restart the dead letter processor.

RabbitMQ Endpoint Health statistics - The endpoint health statistics (errors and warnings) were never in
sync with the statistics in the base child class, hence even if restarted and the statistics were cleared,
they would be repopulated by the old number and always show red errors. This would be intermittent.
This has been fixed.

Additionally, if a RabbitMQ based topic failed to start up when the Neuron ESB runtime was started, the
timer would never be initialized so there was nothing watching to try to refresh the statistics reported in
Endpoint Health within the Neuron ESB Explorer in case where the RabbitMQ topic would later be
restarted.

Adapters

Microsoft Dynamics CRM 2013 Adapter

This is a new adapter included in the 3.1 release. This adapter supports both one way subscribe as two-
way, solicit response mode. Users can either send updates or inserts into Dynamics CRM 2013, or make
FetchXml Query requests against Dynamics CRM 2013. This adapter also supports meta-data harvesting.
Users can browse the operations exposed by Dynamics CRM2013 and elect to generate Xml Schemas
and sample Xml Messages for the various operations.

This adapter supports multiple security options, standard Windows credentials, Live Id credentials and
Federated.

& Neuron ESB Explorer

Fle View Toos Help

‘[| %~ | @ Stopped ~ | Configure Server | Category Filter ~

‘You are working offiine. C:

Connections

201
% Adapter Endpoints

=lolx|

= s Tasks ¥
Look For: Find
< Import a Service
5 o Connection Methods ||| INew [5)Copy €3Delete |(A)tide Detai ‘|
& Adapter Regstration || Neme | cateqory | zone | Adepter | Mode | Description
G Service Bindings [™4 CRM20130neWayEndpoint Enterprise | CRMAdapter Subscribe
) P @ Enterprise CRMAdapter Solicit Response
= s Endpoints
g Service Endpoints
@3 Adapter Endpoints.
= » Policies
& Service Polcies 7 Apply () Cancel | Bindings Adapter Bindings Viewing Endpoint CRM20130neWayEndpoint |
@ Adapter Polices |
@ General Properties
B General
Server Address €rm2013
Organization Name NeuronDemo
E] Metadata Generation
@ Messaging B Security
Security Method Windows.
[- e
Username Administrator
Password seessnene
W Seauity Retrieve Metadata
operations and
y’ Processes
g Deployment 20f2
s‘m"" W ¢ A B CDEF G HTI J K LMNGOTPG QR RTSTUV WX Y 2

The Meta data generation wizard can be accessed through the “Retrieve Metadata” property of the
adapter endpoint.

x
Select a category: I % Available Account operations: | »
I Description

= CRM Entities Al
- Account Delete Entity: Delete an existing record.account: ...
- Activity Save or Update Entity: Create an instance (record...
Set Entity State: Sets the state of a record, for ex...

Name I
Delete Entity
Save or Update Entity

Set Entity State

Activity Party
Address
Announcement

- Annual Fiscal Calendar

- Application File

- Application Ribbons

-~ Appointment
Article
Artide Comment
Article Template

- Attachment

- Attribute Map

- Auditing

- Authorization Server
Bulk Delete Failure
Bulk Delete Operation
Bulk Operation Log

- Business Process Flow Instance

~Business Unit

- Business Unit Map

- Calendar
Calendar Rule
Campaign

Add I Remove |

Chosen operations:
Category

Entity/account

| Desaription |

Delete Entity: Dele...

I Name
Delete Entity

<

5l

Z

Operations can be selected by clicking the Add button. After operations are selected, the Import button
will display the selected operations, allowing users to edit their properties and to optionally choose to
generate sample Xml messages. The Finish button will store all the generated Xml Schemas and

messages into the Neuron Explorer’s Repository.

¢ Schemas to Import

The following schemas will be imported into the Repository. To modify the settings, click on the row.

Operation Version Description Overwrite
account_Delete Entity Delete Entity General This Delete Entity schema was imported by the Dynamics

[~ Set Import directives to file system Cancel | Finish

4

Neuron ESB 3.1 ships a sample demonstrating how to use the new adapter. This can be found in the
Neuron Explorer’s Sample Browser.

SalesForce.com Adapter

This is a new adapter included in the 3.1 release. This adapter supports the publishing of outbound
notifications directly from SalesForce.com to Neuron ESB as well as two-way, solicit response mode.
Users can either send updates or inserts into SalesForce.com, or make Query requests against
SalesForce.com. This adapter also supports meta-data harvesting. Users can browse the operations
exposed by SalesForce.com and elect to generate Xml Schemas and sample Xml Messages for the
various operations.

When using the SalesForce.com adapter in Publish mode, the user must supply a URL that Neuron will
host. All outbound notifications that are received can then be mapped to specific topics using the
“Message Routing Table” property of the adapter endpoint.

_ioix]

Fle Vew Tools Hep

(& | s~ | @ Running - | Configure Server | Category Filter - |

You are working offiine. Q:\WebCast\Solutions\DemoSolution

B ¢ Tasks Look For: l— Find

< Import a Service

5 s Connection Methods |||[_JNew [l Copy €3 Delete |(2)Hide Detai I
‘ Mode ‘ Description PI

@ Adapter l || Neme | cateqory | zone | Adaoter

&y Service Bindings P @ c

& Service Behaviors > @3 r Ent ter Pul |
S+ Endpoints] seorceueny Sesoredapter_[subsabe | M

Z@ Service Endpoints

@ Service Endpoin Apply () Cancel | Bindings ~Adapter Bindings Viewing Endpoint SalesForceQuery

3 Adapter Endpoints

Pre es

o s polcies Genera opertes |

& Service Polides B General

SalesForce.com Login URL hi I lesfor 28.0

&3 Adapter Polices eudesic.com

Username
Password

Security Token eecescsssccsssee
B Metadata Generation
- . Retrieve Metadata
@ Messaong © Publish Mode Properties
Publish Topic
ety Message Routing Table (Collection)
s Outbound Notification URL
% Comnectons Audit Mesage On Failure False
Security Publish Topic
The Neuron topic that messages wil be published to. Required for Publsh mode.
;}” Processes
g Deployment Tof17
smww W # A B CDEF G HTI JKLMNGOTPTG QR RSTUV WX Y 2

Modified .;

The Meta data generation wizard can be accessed through the “Retrieve Metadata” property of the
adapter endpoint.

x|
Select a category: I ? Available Account operations: ?
[=)- SalesForceAdapter - Name I Description]
[5)- SalesForce Objects create create: Adds one or more new records to your org...
Account delete delete: Deletes one or more records from your org...
AccountContactRole merge merge: Merge up to three records into one.Accou...
Acc””mF_EEd outboundMessaging outboundMessaging: Outbound messaging allows ...
Accounthistory undelete undelete: Undeletes records from the Recydle Bin....
AccountPartner : .
update update: Updates one or more existing records in y...
AccountShare upsert upsert: Creates new records and updates existing...
ActivityHistory
AdditionalNumber
AggregateResult
ApexClass
ApexComponent Add I Remove |
ApexLog Chosen operations:
ApexPage
ApexTestQueueltem Category I Name l Description]
ApexTestResult Object/Account delete delete: Deletes on...
ApexTrigger
AppMenultem
Approval
Asset
AssetFeed
AssignmentRule
AsyncApexJob
Attachment
AuthProvider
BrandTemplate LI
Import l Close |
4

Operations can be selected by clicking the Add button. After operations are selected, the Import button
will display the selected operations, allowing users to edit their properties and to optionally choose to
generate sample Xml messages. The Finish button will store all the generated Xml Schemas and
messages into the Neuron Explorer’s Repository.

¢ Schemas to Import x|

The following schemas will be imported into the Repository. To modify the settings, click on the row.

Name Operation Version Category Description Overwrite

Account_delete_sObject Account_delete 1.0 General This schema represents the Account SalesForce.com
Account_delete Account_delete 10 General This Account delete schema was imported by the -

™ Set Import directives to file system Cancel Finish

4

Extended Apache Active MQ Adapter

Several modifications were made to this adapter to achieve higher throughput in environments with
limited 10 capabilities. We added support for a configurable number of ActiveMQ Consumers to publish
messages to Neuron ESB and a configurable number of producers to send messages to ActiveMQ from
Neuron ESB. Support was also added for different acknowledgement types when reading messages
from ActiveMQ — Individual Acknowledge, client acknowledge, transactional, auto acknowledge. For

sending messages to ActiveMQ, we added support for both synchronous and asynchronous sends.
Additionally, the client libraries were upgraded. We now use:

¢ Apache.NMS.ActiveMQ —1.6.2
* Apache.NMS-1.6.0

Updated Neuron ESB Adapter Framework

This has been updated and is now included in the Neuron Explorer’s Sample Browser. This is a sample
project template that demonstrates how to build Neuron ESB Adapters using any message pattern such
as request/response, solicit/response, one way publish, one way subscribe. Many helper functions have
been pushed into main Neuron ESB assemblies making adapters much easier to develop.

Miscellaneous

POP3, Microsoft Exchange, Azure Service Bus, and FTP/SFTP/FTPS Adapters — At runtime, these adapters
may use the Neuron ESB Audit Database for specific functions, if enabled. We found that under certain
conditions the adapters would erroneously detect that there was no Neuron ESB Audit database
configured for the environment. Hence those specific features, if enabled, would remain effectively
disabled. This has been corrected.

Microsoft Exchange Adapter - System.ArgumentException i.e. "The value must be greater than 0" would
be thrown if a slash wasn't used with the folder name.

Service Endpoints

Miscellaneous

NEW — Client Credentials, Service Credentials and Access Controls Lists are all populated by the
Credentials created and maintained in the Security section of the Neuron ESB Explorer. If these were set
in previous versions of Neuron ESB, they will have to be reconfigured to use the Credential store.

NEW - Windows authentication is now supported when using the REST binding with the
Transport:Windows security setting.

In Neuron ESB 3.1 we have fixed service endpoints so when policy retries are defined, they show up as
warnings similar to adapter endpoint retries when policies are used. Additionally, warnings and errors
are incremented for the WMI performance counters for adapter endpoints.

Performance
Neuron Runtime

Asynchronous Startup and Shutdown

In previous releases, on start up the Neuron ESB runtime would start up each Service and Adapter
endpoint, one at a time. This could result in both significant startup and shutdown times if there were
many endpoints defined in a solution. This has been changed in Neuron ESB 3.1 so that all endpoints are
started up and shutdown asynchronously.

Neuron Installer

Neuron ESB WMI Performance Counters

The creation of these has now been moved to the Setup.exe installer. Previously, these were created
each time the Neuron ESB Runtime was started. This feature is represented on the Feature Install page
of the installation wizard by the “ESB Service Management Objects” and is disabled (unchecked) by
default.

neuron ESB

Please choose which Neuron ESB 3.1 features that you want to install on the computer.

Neuron ESB 3.1

Neuron Client API

ESB Service
[ESB Service Management Objects

Discovery Service

Adapters
Apache ActiveMQ
Microsoft Dynamics Great Plains
File
FTP/FTPS
icrosoft Dynamics CRM 2013
icrosoft Dynamics CRM 2011
Microsoft Exchange

