
Overview of
Docker in the Cloud

Docker in the Cloud

Table of Contents
Introduction ..3
Implementation Attributes ...4
 Runtime Characteristics ..4
 DevOps Characteristics ...4
 Management and Orchestration Platforms ...5
 Image Management ..5
 Solution Rubric ..5

Docker on Amazon Web Services ...8
Docker Solutions on AWS ..8
 Elastic Container Service (Container as a Service) ...8
 Elastic Beanstalk (Platform as a Service) ...10
Additional Container Support ..11
 Tools for Amazon Web Services ..11
 Additional Orchestration Tools ...11
 AWS EC2 Container Registry Service (ECR) ..12
 AWS Marketplace ..12

Docker on Google Cloud Platform ..13
Docker Solutions on Google Cloud Platform ...13
 Google Container Engine (Container as a Service) ..13
 Google App Engine (Platform as a Service) ..15
Additional Container Support ..17
 Google Container Registry (GCR) ..17
 Google Container Builder ...17
 Container-Optimized OS (COS) ..17

Docker on Azure ...19
Docker Solutions on Microsoft Azure ...19
 Azure Container Service (Container as a Service): ...19
 Azure Container Instances (Containers as a Service) – Public Preview21
 Additional Container Support ..23

Conclusion ...25

This paper will discuss the options for running
containers on the three largest cloud providers:
Amazon Web Services, Microsoft Azure and Google
Cloud Platform. For pragmatic purposes, we will
limit the discussion to Docker-as-a-container
technology, which has emerged as the de facto
standard for container runtimes.

The target audience for this article are those
familiar with software development and/or
hardware infrastructure with a basic knowledge
of containers. The goal is to leave the reader with
an understanding of the different approaches
of each cloud provider along with a level 200
evaluation of each of their different offerings. This
will aid the reader in a next-step decision of which
cloud provider they should choose for their own
container platform.

Container technology has existed in some form
for several decades. What began as a low-level
Unix system for process isolation in the late 1970s
has evolved into a fully-featured operating system
virtualization technology that works on both Linux and
Windows operating systems.

Containers have exploded in popularity in recent
years for a variety of reasons. Containerization has
played a key role in the evolution of deployment
models, from physical machines to virtual machines to
virtualized operating systems. Because of the nature
of containers, they can be ultra-lightweight and have
startup times that are an order of magnitude better
than virtual machines, thus improving performance

and virtualized density per physical/logical host.
More recently, the availability on Windows operating
systems has made the world of containers more
accessible to a larger subset of organizations.

Containers address several traditional challenges
around the software development lifecycle (which
will not covered in this piece), but because of this,
containers are seeing considerable demand in all
phases of development lifecycles and support
paradigms - namely DevOps efforts and continuous
integration / continuous deployment strategies). At
the same time, the emergence of cloud platforms as
commodity computing resources has meant that a
container deployment model fits particularly well today.

However, while containers solve several historical
challenges, they also introduce several other
characteristics that warrant consideration. The
container itself is only one facet of a potential solution,
but we must also consider additional aspects, such
as how to distribute containers across nodes (hosts),
how to manage load-balancing and failover, how to
instrument containers, and a handful of other factors.

Each cloud provider has container offerings to
accelerate and solve many of the challenges that
systems of complexity and scale require. These
offerings fall into the Platform as a Service or Container
as a Service category to further reduce the burden on
technical teams for building, deploying, and managing
a Docker solution through development to production.
In each cloud provider section, individual solutions or
offerings will be reviewed against the characteristics.

Introduction

NOTE: Infrastructure-as-a-Service (IaaS) solutions are not covered in this piece unless there is something compelling to note, as they will

be common across the three cloud platforms. This also would result in an evaluation of the cloud providers IaaS platform instead of the

Container offerings.

In the next section, we cover the characteristics that are important to a potential container strategy. While most of these elements can

be managed manually, a container solution must support scale, in which case mature and robust management of a container solution

becomes critically important.

Introduction

Implementation Attributes
For each solution, we discuss its fit against a set of canonical characteristics. The list of characteristics used
are below.

Runtime Characteristics
For each possible solution, we cover the following runtime characteristics.

Table 1: Runtime Characteristics

Scheduling and
Orchestration

Containers are deployed to a single node (this can be a virtual or physical machine). When and
where a specific container is deployed is a function of the scheduler. This can be a function of
available node resources, choices for high availability, or a variety of other concerns.

Routing and Load
Balancing

Multiple containers may be running the same image for availability and failover. How a request is
fulfilled between the same services is managed by the routing and load balancing characteristic of
the solution.

Service Discovery When a new instance of a container is started, the routing and load balancing solution needs to be
made aware so that it can be included in the routing strategy.

Failover and
Recovery

The solution should support detection of failed containers and restart as needed.

Cluster State The context of a running container solution must be managed. How this context managed and
stored is an important function of the solution.

Container
Deployment Unit

While a container is the unit of deployment for an image (typically a single service/function),
containers are often deployed in logical groupings. The definition of how containers are deployed
together, how many of each, etc. can differ across strategies.

CHARACTERISTIC DESCRIPTION

Introduction

DevOps Characteristics
Instrumentation is a critical element of a container strategy. Support personnel must have visibility into not
only the behavior and performance of the container, but also the host nodes and solution infrastructure. The
following characteristics are important for supporting this transparency.

Table 2: DevOps Characteristics

Logging We need support for forwarding logs from the container itself as well as any logs produced internally
that may be of interest.

Monitoring We need support for monitoring behavior of the container ecosystem, single containers, or other
elements of the solution strategy.

Characteristic Description

Management and Orchestration Platforms
Many platforms exist today to manage and orchestrate container environments such as Docker Swarm or
Kubernetes. These existing platforms are integral to some cloud provider’s container offering. This may
be built-in or a configuration option at run-time. Since many organizations already leverage some of these
existing platforms, this was also included in the evaluation.

Image Management
Containers rely on the notion of an image, the definition (or template) of a running container instance. Building
this template results in an artifact that instantiates into a running container. Container-based strategies often
include the creation and management of images as part of a development lifecycle; this supports traceability
and security of production instances.

The process of creating an image can be done manually or automatically (for example, in response to a change
in a template definition within source control). The resulting image is typically stored in an image registry, a
platform that tracks and secures container images.

In most scenarios, the choice of how to build images and where to store the resulting artifact can be opaque
to a solution. A few solutions will implicitly support image creation and registry capabilities, but most do not.
If the solution chosen supports enterprise requirements (for example, images need to be signed and verified
before production deployments), then the choice is largely arbitrary.

As such, we don’t explicitly cover Image Management when we examine the solutions -- except in cases
where it may provide a unique set of capabilities.

CHARACTERISTIC DESCRIPTION

Introduction

Solution Rubric
For each strategy discussed for supporting Docker in the cloud, we evaluate each characteristic using the
following generalized rating values.

For specific characteristics, see the following table for additional descriptions:

Table 3: Rubric Ratings

-1 The solution doesn’t support the characteristic in any way.

0 The solution partially supports the characteristic. Caveats or notes are included in the description.

1 The solution supports the characteristic.

Table 1: Ratings Descriptions

Scheduling and
Orchestration

You must provide your
own scheduling and
orchestration support.

You must provide your own
routing and load balancing
support.

You must provide your own
service discovery support.

Scheduling and orchestration of
containers / services may require
third-party services to automate
or require some manual actions.

Routing and load balancing may
require third-party services to
automate or require some manual
actions.

Inclusion of new container
instances into the routing and
load-balancing solution may
require wiring in third-party
services to automate or require
some manual actions.

Scheduling and orchestration is
fully managed in the solution.

Routing and load-balancing
is fully and automatically
managed in the solution.

Service discovery is fully
supported in the solution.

Routing and Load
Balancing

Service Discovery

CHARACTERISTIC -1 (Not Supported) 0 (Partially Supported) 1 (Supported)

VALUE DESCRIPTION

Introduction

Failover and
Recovery

Cluster State

Logging

Orchestration
Platform

Container
Deployment Unit

Monitoring

You must provide
your own failover and
recovery support.

You must provide
your own failover and
recovery support.

You must provide your
own logging capture
support.

An industry-standard
orchestration tool is
not supported outside
of IaaS.

There is no notion of
container deployment
unit.

You must provide your
own monitoring support.

Health checks and recovery from
failed services may require third-party
services to automate or require some
manual actions.

Management and persistence of
container / host state may require
third-party services to automate or
require some manual actions.

Log forwarding / capture may require
third-party services to fully automate.

Industry standard orchestration
tool supported through third party
accelerators or other tooling. Not
supported natively on the provider
container solution.

(Not a characteristic possibility.)

Monitoring and notification from
aggregate system logs may require
third-party solutions to automate.

Failover and recovery is fully
managed by the solution.

Container deployment units are
a fundamental characteristic of
the solution.

Monitoring is provided natively
in the solution.

Cluster state is fully managed
by the solution.

Logging capture is provided
natively in the solution.

One or more industry standard
orchestration options are
supported by the platform.

Table 1: Ratings Descriptions (cont.)

CHARACTERISTIC -1 (Not Supported) 0 (Partially Supported) 1 (Supported)

Docker on AWS

Elastic Container Service (Container as a Service)

AWS offers a managed container orchestration service call Elastic Container Service (ECS). Amazon ECS is a
highly scalable, high performance container management service that supports Docker containers and allows
you to easily run applications on a managed cluster of Amazon EC2 instances.

Both Linux and Windows are supported with AWS in the form of a customized Amazon Machine Image
(AMI). ECS dynamically selects an optimized Linux EC2 instance to run your containers. However for
windows, an instance must be created up front. Windows 2016 with container support is available when
launching your windows instance. One interesting note is that a PowerShell script is required for registration
into a cluster when launching the windows instance but its documented in great detail here.

There are number of scheduling options available with ECS, but in order to run a container users must first
create a task definition. Task definitions specify the container information for applications, such as how many
containers are part of the task, what resources they will use, how they are linked together, and which host
ports they will use. Tasks define your unit of deployment which can be a single container or an integrated set
of related containers.

The service scheduler ensures that the specified number of tasks are constantly running and reschedules
tasks when a task fails. Tasks can also be manually run, use a cron-like, or a custom open source scheduler
like Blox. The service scheduler is also responsible for load balancing. This includes both the desired counts
and registering and deregistering the instances with the load balancer. The load balancer can make routing
decisions at the application layer with path-based routing and dynamic port mappings.

Dynamic discovery container services can be achieved by harnessing other AWS services including Cloud
Trail, Route 53, and Lambda. The solution is quite extensive and is described here in greater detail.

ECS also monitors tasks, the state of the containers within the cluster as well as overall cluster state.
Detailed logs of change events are sent to CloudWatch where additional actions can be performed. For
example, events can be sent to Simple Notification Service (SNS) for addressing stopped task events.
Lambda functions can listen for ECS events and performs some other actions. Two examples can be
referenced here.

The ECS Service scheduler will also automatically recover containers that become unhealthy or stop running
to ensure you have the desired number of healthy containers supporting an application.

Docker Solutions on Amazon Web Services

Docker on AWS

Table 5: AWS EC2 Rubric

Scheduling and
Orchestration

Fully supported

ECS automatically routes requests to available containers via the
Application Elastic Load Balancer.

Fully supported

Fully supported vial CloudWatch and CloudTrail.

ECS includes new containers in the cluster when they are created. Dynamic
discovery requires using other AWS service to update DNS entries.

Fully supported

Fully supported vial CloudWatch and CloudTrail.

It can either be a single container or integrated set of related containers.

Multiple third party tools exist to enhance and ease the creation of AWS
clusters using orchestration platforms. See Additional Orchestration Tools
below for other options.

1

1

0

1

1

1

0

1

1

7

Routing and Load
Balancing

Service Discovery

CHARACTERISTIC SUPPORT SCORE

Failover and Recovery

Cluster State

Logging

Composite Rubric

Container
Deployment Unit

Orchestration
Platforms

Monitoring

Container Image

Container Registry
(Amazon EOR, Docker Hub, self-hosted registry)

Container
Instances

Container
Instances

ECS Agent

Tasks

AWS Region

Service Description

Service
Amazon ECS Cluster

AZ 1

AZ 2

ECS Agent

Tasks

AWS

VPC

Docker on AWS

Elastic Beanstalke (Platform as a Service)

Elastic Beanstalk (EB) is one of the AWS PaaS solutions that has the application as the focal point. You
can build a classic three tier web application architecture without having to worry about the underlying
infrastructure. EB handles the details of capacity provisioning, load balancing, scaling and application health
monitoring.

AWS Elastic Beanstalk supports the deployment of web applications from Docker containers. With Docker
containers, you can define your own runtime environment. You can choose your own platform, programming
language, and any application dependencies (such as package managers or tools), that aren’t supported
by other platforms. Docker containers are self-contained and include all the configuration information and
software your web application requires to run.

Runtimes for Elastic Beanstalk are similar to CaaS services. Linux and Windows are supported.
For Docker, specifically, you can choose either single or multiple container support, or pre-configured
solutions including GlassFish, Go, and Python environments.

Docker images can be pulled from public registries including Docker hub, AWS EC2 Container Registry
Service (ECR), and private locations such as an AWS S3 bucket.

For multiple container applications, Elastic Beanstalk uses Elastic Container Service (ECS) under the hood.
It creates a cluster, and task definitions exactly like the CaaS solution works including scheduling, routing,
load-balancing, fail over, recovery and monitoring. For the rest of this section on PaaS we will concentrate on
single Docker containers and how they work with Elastic Beanstalk.

Single Docker containers within EB are deployed along with numerous other AWS services. Specifically Auto
Scaling that can schedule scaling out or scaling in depending time of day, network and service load, or some
other trigger event from within the EB echo system.

As before with scheduling, routing and load balancing are handled with other AWS services. Primarily the
Auto Scaling engine that’s attached to the EB environment for the application.

The Elastic Beanstalk solution handles service discovery but automatically updating load balancing when EC2
instances are added and removed.

Docker on AWS

Single Docker containers are managed like any other three tier architectures. The concept of a cluster is not
present in this situation. State of the EC2 instances are monitored and EB provides insight into the health of
the containers.

The unit of deployment is a single container per each EC2 instance.

Logging and monitoring for EB is like the CaaS solution. Events, logs, and all activities are sent to
CloudWatch and CloudTrail.

AWS provide a command line interface to configure EB from many environments. See Configure the EB CLI
and Managing Elastic Beanstalk Environments with the EB CLI for details.

Table 6: AWS EB Rubric

Scheduling and
Orchestration

Fully supported. (Multi-container only)

ECS automatically routes requests to available containers via the Application
Elastic Load Balancer.

Fully supported

Fully supported vial CloudWatch and CloudTrail.

ECS includes new containers in the cluster when they are created. Dynamic
discovery requires using other AWS service to update DNS entries. (Multi-
container only).

Fully supported

Fully supported vial CloudWatch and CloudTrail.

Rubric assumes multi-container.

Both single container and integrated set of related containers are supported.

Not supported using EB with containers.

1

1

-1

1

1

1

0

1

1

6

Routing and Load
Balancing

Service Discovery

CHARACTERISTIC SUPPORT SCORE

Failover and Recovery

Cluster State

Logging

Composite Rubric

Container
Deployment Unit

Orchestration
Platforms

Monitoring

Docker on AWS

Additional Container Support

Docker Solutions on AWS

Elastic Container Service (Container as a Service)

AWS has other services and offerings that support Docker containers that are worth mentioning that bring
greater support and control of your deployments.

Tools for Amazon Web Services

There are a wide variety of developer tool available for most AWS services for users that want to fully
harness the power of building and managing containers that extend the capabilities found in the web
console. This includes support for Windows, Linux, and OSX.

Additional Orchestration Tools

AWS has multiple third party partners and tools to enhance orchestration of Docker Containers including:
• Kubernetes Operations
• CoreOS Tectonic
• Kube-AWS

AWS EC2 Container Registry Service (ECR)

ECR is fully function Docker registry that you can push, pull, and manage images securely and reliably. Users
can create repositories of images that have defined access controls based from IAM policies. AWS provides
a command line interface to build containers and push them directly into ECR. As with all AWS services,
activities performed with ECR can be sent to CloudTrail to keep a complete audit trail of API calls.

AWS provide a command line interface to configure ECS from many environments. See ECS CLI for details.

AWS Marketplace

The Marketplace is an online store for third parties to create and distributes solutions that extend the built-in
offerings provided by AWS. Searching for “Docker” in the web console produces dozens Amazon Machine
Image (AMI’s) you can use to build custom solutions including subjects such as deep security, third party
orchestration, and private repositories.

Docker on Google Cloud Platform

Docker on Google Cloud Platform
Google has been evangelizing containers as the solution for large-scale application deployment for over
15 years and has made significant contributions to open-source that have driven adoption of containers
by others. All Google services are developed and managed as containers, including Gmail and YouTube.
As proven by Google, containers are ready to run applications on truly global scale and with very high SLA
requirements.

Google Container Engine (GKE) is a fully managed Kubernetes solution that brings advanced container
orchestration and management capabilities to GCP. Kubernetes is itself the result of Google’s own
experience running and managing containers at scale, and has been open-sourced and provided to the
community to advance the state of large scale container deployment. Many of the attributes of GKE are
due to Kubernetes, and can be found in other provider’s offerings. This makes Kubernetes a compelling
solution for container deployment with no vendor lock-in; it is simple to redeploy an entire application to
another Kubernetes platform, if a vendor specific database, for example, is not in use. Kubernetes is the
only orchestration option that is supported by GKE.

At is most basic level GKE supports any Linux image that meets the Docker container specification,
and that can be accessed via a published repository. Support is built-in for deploying from private GCR
repositories, but others may be used as well with some additional configuration required to pull container
images from non-GCR private repositories.

Containers are assembled and managed as groups of dependent containers named pods. Very often a
pod will consist of a single container image, but the value of pods come when containers have a required
dependency. For example, if a third-party logging solution is to be used for whatever reason, it makes
sense that all containers need to be deployed with a logging container that deals with accumulation and
delivery of logs to the third-party. To enforce this dependency, Kubernetes, and by extension GKE, deploys
a pod that has been defined to be the application container and the third-party logging container. The
pod will be scheduled and managed, ensuring the third-party logging container is always available to the
application container.

Strategies such as affinity/anti-affinity and tainting are available in GKE. Affinity and tainting are ways of
defining constraints for the default scheduler such that pods are deployed in a manner to avoid each other
or be logically close. For example, if your application contained two CPU-constrained services you can
indicate that these should never be scheduled on the same node for performance reasons.

Docker Solutions on Google Cloud Platform
Google Container Engine (Container as a Service)

GKE Infrastructure

Your application services
Kubernetes
Master

1. Incoming HTTP requests are distributed to running containerized services
2. Pods are monitored and managed automatically based on rules

3. Master node is updated as pods go through their lifecycle, LB updated
4. Logs collected automatically, other tools can be added to support

Pod A
Container
Engine

Pod B
Container
Engine

Pod C
Container
Engine

Logging

Monitoring

Error Reportnig

4

21

3

Docker on Google Cloud Platform

Regardless of how GKE chooses to distribute your pods, it has built-in support for routing and load balancing
of services to make sure that the services exposed by the containers can be found and used. In addition,
more complicated deployment scenarios can be applied on top of Kubernetes (and GKE) to allow for canary
and blue-green type deployments to happen with minimum effort. Kubernetes has built-in service-discovery
mechanism for services using private DNS that is automatically updated as services are deployed and
redeployed. Combined with the use of namespaces, this simple but effective strategy allows for services to
refer to each other using a simplified hostname which is resolved at runtime to a known running instance.
Additional service discovery strategies may be layered on top of GKE using third-party solutions such as
linkerd or istio as needed.

GKE monitors and automatically redeploys pods and services based on health checks. If a node fails, all pods
on the node will be automatically redeployed such that there is minimal interruption to services. So long as
enough instances are deployed, GKE will ensure that a minimum level of pods are running always. Short of
a catastrophic failure, this all but guarantees a high SLA for your services. If there are problems, Stackdriver
logging is enabled by default, and will collect all pod and container logs to a central location. You can review
the logs using GKE web console or Kubernetes tools. Due to the very open nature of Kubernetes and GKE,
third-party and alternate logging solutions can be used by disabling Stackdriver and adding the logging
solution to pod definitions.

If needed, Stackdriver monitoring may be enabled on a GKE cluster. When enabled, an API may be called to
inspect the current state of the cluster or the simple web UI can be used to review status. For applications
where the application source code is stored in a supported version control system, and is in a supported
programming language, Stackdriver even allows run-time inspection and debugging of live systems.

Docker on Google Cloud Platform

Table 6: AWS EB Rubric

Scheduling and
Orchestration

GKE fully manages all aspects of scheduling and orchestration and allows
customization as needed

Multiple strategies provided and can be customized to suit application
requirements

Containers and nodes are health checked, with automatic recovery options

GKE provides integration with Stackdriver logging, and other third-party solutions

GKE automatically updates to changing pod deployments and node health

GKE abstracts all cluster management away from the application

GKE supports Stackdriver monitoring, and other third-party solutions

Unit of deployment is a pod of one or more containers

Kubernetes is the orchestration option on GKE and is the underlying platform
for the container offering.

1

1

1

1

1

1

1

1

1

9

Routing and Load
Balancing

Service Discovery

CHARACTERISTIC SUPPORT SCORE

Failover and
Recovery

Cluster State

Logging

Composite Rubric

Container
Deployment Unit

Orchestration
Platforms

Monitoring

Google Container Engine (Container as a Service)

Google APP Engine (GAE) provides a sandboxed environment for web applications that are automatically
scaled and managed by the platform. Usually your development team will write an application in one of the
supported languages (Go, Java, Node.js, etc.), and describe the runtime parameters with a simple YAML
file. This YAML file is a concise instruction set that drives an automated container build and deploy process,
compiling and packaging the application from source into a managed application.

Since GAE uses containers as the final deployment mechanism it also supports deploying containers directly
from a registry, providing that the containers are configured to accept HTTP connections on port 8080. This
is a key limitation when deciding to use GAE for container deployment; the container must expose an HTTP
listener on port 8080 or GAE will mark the deployment as failing, since health checks are via the same
exposed port and a fixed relative URL of /_ah/health.

Note: GAE is broad in its definition of “healthy”; any HTTP response code that is NOT 502, 503 or 504 will
be considered healthy.

Architecture: App Engine with Containers

GKE Infrastructure

Your application services

Load
Balancing

1. Incoming HTTP requests are distributed to running containerized services
2. Pods are monitored and managed automatically based on rules

3. Master node is updated as pods go through their lifecycle, LB updated
4. Logs collected automatically, other tools can be added to support

Container A
App
Engine

Container B
App
Engine

Container C
App
Engine

Logging

Monitoring

Error Reportnig

4

2

1

3

HTTP

Docker on Google Cloud Platform

Another limitation that will be evident when deploying a micro-services application is that intra-service
discovery is non-existent in GAE; if a service in Container A needs to communicate with Container C, as
shown below, then the URL for Container C must be embedded in service deployed to Container A. Finally,
GAE does not support or provide access to the underlying orchestration platform; all decisions about
container placement and affinity is made by GAE and cannot be influenced by the application.

If your application can function with these restrictions, then GAE makes for a compelling solution for auto-
managed containers. GAE will handle all scheduling and routing, scaling the number of containers to match
usage constraints such as CPU utilization or network throughput, and updating load balancer appropriately.
A nice feature is a built-in versioning scheme that allows rolling deployments of container updates; when it
is time to launch a new version of your services, GAE provides a mechanism to rollover new requests, while
preserving access to prior instances for live HTTP connections.

GAE automatically logs request and response details, and captures entries anything written to the container
stdout and stderr streams. The logs are kept for a maximum of 90 days, and are automatically truncated to a
maximum size of 1 GB. In addition to application logging, the logs generated by GAE’s monitoring framework
are available. For alerting, third-party services can be used to determine service availability, or the log files
may be exported into other GCP products such as BigQuery or Pub/Sub for additional processing.

Docker on Google Cloud Platform

Table 8: Google App Engine Rubric

Scheduling and
Orchestration

App Engine fully manages all aspects of scheduling and orchestration

Incoming HTTP traffic is automatically routed to port 8080 on containers

Containers are monitored and restarted automatically when problems are
detected

Partially supported through log forwarding or whatever

GAE does not provide intra-service discovery, but does update routing and load
balancing based on container lifecycle

Provided natively by the platform and invisible to the implementation

GAE allows the inspection of log files from monitoring framework

Unit of deployment is a single container instance

GAE does not provide any access to other orchestration platforms

1

1

-1

1

1

0

0

1

0

4

Routing and Load
Balancing

Service Discovery

CHARACTERISTIC SUPPORT SCORE

Failover and
Recovery

Cluster State

Logging

Composite Rubric

Container
Deployment Unit

Orchestration
platforms

Monitoring

Docker on Google Cloud Platform

Additional Container Support
GCP provides access to the open-source Docker engine through managed services by using existing OS
images with Docker pre-installed. Docker customers that prefer to use an installation managed by familiar
Docker management tools can look at Docker CE for GCP¹ , currently in beta. Google Cloud Platform does
not provide an out-of-the-box OS image with a commercially supported Docker instance. You must launch a
Windows Server VM, or Linux VM, and install Docker manually to have a supported version available for use.
GCP provides alternative tools that can be used in place of standard Docker offerings; while not required,
these tools are closely integrated into the GCP ecosystem and management suite.

Google Container Registry (GCR)
Google Container Registry is a Docker-compatible registry that supports private (default) or public
repositories for Docker containers. While it is possible to use other container repositories, such as Docker
Hub, GCR is integrated with GCP authentication and authorization framework and you can configure access
to the registry using the same IAM mechanisms that are used to control access to the GCP project.

Google Container Builder
Google Container Builder is a build tool that produces Docker containers that can be automatically triggered
by changes in source code. While not a full replacement for a tool such as Jenkins or Drone, container
builder is an alternative to installation and configuration of those tools that is provided by GCP.

Container-Optimized OS (COS)
Container Optimized OS is a minimal Linux OS based on Chromium OS that is designed to run Docker
containers as a first-class option. Instead of installing applications using a package manager, containers can
be pulled directly from repositories and run at startup. All configuration is provided during startup via cloud-
init parameter, a YAML formatted string that describes how the instance(s) are to be configured during boot
before accepting network connections.

In many ways, Container-optimized OS fills the same niche as CoreOS or Mesosphere DCOS, but is
optimized to run in the Google Cloud Platform environment. Container-optimized OS is integrated into
GCP’s IAM framework and other GCP services that make it easier to deploy containers on COS. Container-
optimized OS is used as the foundation for all GCP managed container solutions.

 ¹https://blog.docker.com/2017/03/beta-docker-community-edition-google-cloud-platform/

Docker on Azure

Docker on Azure
Microsoft has embraced open source solutions across the organization and is reflecting this throughout their
major platforms. Linux has becom a first class platform in Azure. SQL Server runs on Linux and .Net Core
has not only been open sourced, but also is built to run on Linux. This shift in direction has led to bringing
in support for containers, especially as their popularity grew. Microsoft’s commitment to containers can be
seen in the major investment needed to bring Windows Containers to the Windows Server 2016.

Docker Solutions on Microsoft Azure

Azure Container Service (Container as a Service)

Microsoft leverages mature and popular management and orchestration platforms for containers through
Azure Container Service (ACS). This approach is similar to Google Cloud utilizing Kubernetes, although
ACS allows for multiple potential platforms. ACS currently supports three modes; DC/OS (Mesos), Docker
Swarm, and Kubernetes. Each mode uses the named orchestration platform, backed by the scalability and
high availability of Azure through scale sets.

ACS provisions a Docker cluster in an Azure VM Scale Set secured with TLS by default. Azure VM Scale Sets
provide autoscaling (depending on the mode), load balancer, storage, and NAT rules. Rules can be applied to
assist with the management of routing and load balancing. The lifecycle of nodes is managed using auto-
scaling groups or similar constructs, so that if a node enters an unhealthy state for unforeseen reasons, the
node will be taken out of the load balancer rotation and replaced automatically. All of its container tasks will
be rescheduled.

Service discovery utilizes the internal discovery mechanisms of the orchestration platform. However,
several Azure features can also enhance service discovery. Additional nodes can be added outside of the
orchestration platform through the ACS console and the platform will manage adding the node to the
cluster. Azure creates a secure network and instance configuration through scaled sets along with secure
deployment of public endpoints.

VM sets are leveraged for cluster state, although the orchestration platform (mode) can also provide insight
into the state of the cluster. For example, when Docker EE is utilized, the internal cluster manager is the
primary method to administer the cluster state. ACS can use OMS for monitoring the cluster state as
well which gives a single location for all management and health issues. ACS also has an open API to
gain insights into the health of the containers. More proactive monitoring methods such as alerts can be
configured through the Azure portal in addition to OMS or pulling from the API.

Master Availability Set Agent VM Scale Set

SSH

2202
2201

NAT Public Address Application load balancer with probe

2200
443

8080
80

Master0
172.16.0.5

Agent0
10.0.0.4

172.16.0.0/24
subnet

10.0.0.8/24
subnet

Swarm: 2375

Docker: 2375

HTTPS: 443

8080

HTTP: 80

SSH: 22

ACS can be configured using both the CLI and Azure portal. Since ACS utilizes VM’s, many of the same
features can be configured for container instances. The deployment can be done in an automated fashion
using templates to define instance size and networks. Currently, the service can support agent nodes
between 1 and 100. Azure cores quota can also be used to limit the number of agent nodes in a cluster.
Agent node scaling operations are applied to an Azure virtual machine scale set that contains the agent pool.
In a DC/OS cluster, only agent nodes in the private pool are scaled by the operations. Depending on the
orchestrator, clusters can separately scale the number of instances of a container running on the cluster.
Currently, autoscaling of agent nodes in a container service cluster is not supported.

Centralized logging is a critical component of many modern infrastructure stacks. ACS can forward logs from
containers to a native cloud provider abstraction or a storage account. Log rotation is configured for you
automatically, so chatty logs won’t use up excessive disk space. Likewise, the “system prune” option allows
you to ensure unused Docker resources such as old images are cleaned up automatically.

Lifecycle events and performance counters from Docker containers can be charted on Application Insights.
Install the Application Insights image in a container on the host, and it will display performance counters.
Installing Application Insights image on your Docker host provides these benefits:

• Lifecycle telemetry about all the containers running on the host - start, stop, etc.
• Performance counters for all the containers. CPU, memory, network usage, and more.

The standard Docker ACS deployment is shown in the image below.

Docker on Azure

Docker on Azure

Table 8: Google App Engine Rubric

Scheduling and
Orchestration

Fully supported via ACS

Azure Container Service automatically routes requests to
available containers

Probes and failures are managed at the platform level and
container instances restarted in the case of failures

Fully supported through Azure portal and Azure OMS

Azure Container Service includes new containers in the cluster
when they are created

Provided natively by the platform and invisible to the
implementation

Fully supported via Azure portal and OMS

Unit of deployment is a single container instance

ACS provides a choice of Docker Swarm, Docker Enterprise
Edition, Kubernetes, DOC/OS for orchestration

1

1

1

1

1

1

1

1

1

9

Routing and Load
Balancing

Service Discovery

CHARACTERISTIC SUPPORT SCORE

Failover and
Recovery

Cluster State

Logging

Composite Rubric

Container
Deployment Unit

Orchestration
Platforms

Monitoring

Azure Container Instances target any scenario that can operate in independent containers, like simple
applications, task automation, and build jobs. Although ACI limits its target scenarios, it still provides a solid
feature set such as:

• Fast startup times • Persistent storage
• Hypervisor-level security • Linux and Windows containers
• Custom sizes • Co-scheduled group
• Public IP connectivity • Azure Active Directory integration

Azure Container Instances (Containers as a Service) – Public Preview
Azure Container Instances (ACI) is a fast container deployment service that removes the complexity of
setting up a cluster. With ACI a developer can run a container in Azure, without having to manage any VM
(virtual machines). ACI intentionally does not provide a full orchestration and management solution to stay
with its intent of being a fast and simpler option for running Docker solutions.

Public IP address: 40.85.154.240
Ports exposed: 80

Port: 5000Port: 80

Mounted at
/data/appdata

Azure Files

acishare1 acishare2

Azure Files

myacr.azurecr.io/app.v1 myacr.azurecr.io/sidecar.v1

MyContainerGroup

Virtual Machine

Mounted at
/data/logs

Public IP address: 40.85.154.240
Ports exposed: 80

Port: 5000Port: 80

Mounted at
/data/appdata

Azure Files

acishare1 acishare2

Azure Files

myacr.azurecr.io/app.v1 myacr.azurecr.io/sidecar.v1

MyContainerGroup

Virtual Machine

Mounted at
/data/logs

Docker on Azure

ACI can use either a single instance or a container group. Container groups are like the Pods concept
described previously for the Google Container Engine. The group shares local network, storage, and other
resources and are hosted on the same virtual machine. The group can expose one public IP Address to allow
external access. Below is an example container group. This approach allows an application or API to break up
functionality into different sub-systems based on separate Docker images. Instances can still communicate
with each other in the group while sharing resources. Below is a logical view of an example container group
using a web endpoint with a supporting logging instance.

Logging and monitoring options are similar to ACS.

Since the target use case for ACI involves a simple managed deployment of a Docker instance or group,
many characteristics reviewed in this document are not included which is by design. For example, scheduling,
orchestration and load balancing are not built into ACI. Integration with ACS will allow layering over ACI to
achieve these requirements if needed. The layering capability is in early stages and expected to be complete
before ACI exits preview.

Docker on Azure

Table 10: Azure Container Instance Rubric

Scheduling and
Orchestration

Not supported directly by design. Orchestration and management can be
layered on top of ACI through ACS although this feature is not production ready.

Azure Container instance automatically routes to containers as part of the
deployed service. Load balancing is not supported as only one instance or group
runs at a time.

Containers in the service will be restarted if failed

Logging is integrated to the platform and can be managed through Azure CLI.

Azure Container Instance allows other container instances in a group to discover
each other through localhost and port mappings

State is available through the portal or Azure API. Keep in mind ACI is designed
to contain one instance or container group and not a scaled out cluster.

Monitoring can be done through the Azure Portal and integration with OMS.

Azure Container Instance supports container groups, although features are limited
due to the nature of a single group deployment

Not supported directly by designed. Orchestration and management can be
layered on top of ACI through ACS. This feature is not production ready.

0

1

0

0

1

1

0

0

1

4

Routing and Load
Balancing

Service Discovery

CHARACTERISTIC SUPPORT SCORE

Failover and Recovery

Cluster State

Logging

Composite Rubric

Container
Deployment Unit

Orchestration
Platforms

Monitoring

In other cases, some characteristics are only partially supported by design. Routing of a public IP address to
a container instance in the group and discovery of other instances in a group through localhost is supported,
but not full load balancing. Also, the idea of groups, similar to Pods in Kubernetes is supported, although the
design of a single instance or group deployment limits the need for more complex features like server affinity.

Docker on Azure

Additional Container Support
Microsoft Azure provides a number of other services and tools that support Docker containers worth
mentioning and are listed below.

Docker for Azure
Docker for Azure is a Docker-native solution optimized to work on the Azure platform utilizing the underlying
Azure IaaS services and does not require any additional software to be installed. Latest Docker platform
versions with native orchestration (clustering and scheduling), runtime security, container networking and
volumes are all included with Docker for Azure. Both Docker Community Edition and Enterprise Edition are
supported in this deployment strategy.

Azure Marketplace
The Azure Marketplace contains a number of Docker-specific solutions that will augment existing Docker
solutions or create prescribed Docker solutions based on best practices.

Azure Container Registry
Azure Container Registry Services are a great way to share Docker images. Organizations need to trust
the images they are loading into production. Images need to be certified and approved. Azure Container
Registry is Microsoft’s solution to these and other challenges. Azure Container Registry can host private
company repositories for trusted container images. ACR supports the standard Docker Registry v2, so
pushing and pulling images can be integrated with existing tools and platforms.

CI/CD with Azure Container Registry
One of the biggest challenges when developing modern applications for the cloud is supporting continuous
delivery. Azure and Docker provide a path to implement full continuous integration and deployment (CI/CD)
pipeline using Azure Container Service, Azure Container Registry, and Visual Studio Team Services.

Conclusion

Scheduling and
Orchestration

011111

111111

01-10-11

011111

111111

111101

010001

011111

111101

496749

Routing and Load
Balancing

Service Discovery

CHARACTERISTIC GCP-CCE GCP-AE AWS-ECS AWS-EB Azure-ACS Azure-ACI

Failover and Recovery

Cluster State

Logging

Composite Rubric

Container
Deployment Unit

Orchestration
Platforms

Monitoring

Table 11: Summary View of Rubric

Declaring a clear “winner” for the flagship container service offering would be difficult based on the maturity
of each cloud provider in supporting Docker. Each cloud provider also takes a different approach to their
container offerings. GCP naturally chose the Kubernetes platform to run GCE which was born out of their
deep history of solving challenging problems to support other services from their global business. AWS
leveraged their EC2 platform - a mature, proven, and reliable solution - and then added additional capabilities
forming their container offering. Microsoft went with a highly-flexible model, looking to support many of the
most popular existing orchestration and management platforms and supplementing or enhancing features with
the Azure platform.

Each provider does provide Docker support through existing Platform-as-a-service offerings or a specialized
use case such as Azure Container Instance. In these cases, scoring for the rubric are generally lower. In the
case of the PaaS offerings from GCP and AWS, this is intentional as Docker serves more as a deployment
mechanism of the code base. The PaaS services also support deploying code directly to be hosted and
managed, so this further solidifies the PaaS service intention to be more than a container service. Core scaling
capabilities will be available, but specific container orchestration concerns are generally not built-in. In the case
of Azure Container Instance, the expected use cases are simpler and instance focused, so many features
are excluded on purpose. Users should understand the purpose of the service and not expect a full container
orchestration platform if these services are used.

Conclusion

Each provider has reached a solid level of maturity for their core container offering, so at the level of review
done in this document, there will not be significant feature gaps. There will likely be some differentiation
reached in each area if we further drill into level 300 and 400 details, although those gaps will likely be closed
by each provider over time. In sum, being comfortable with the approach of the provider is likely going to
be a significant driver in the decision making, especially how that solution aligns with existing skill sets or
current approaches to managing containers in an organization.

